Skip to main content

Whole-Head Child MEG Systems and Their Applications

  • Reference work entry
  • First Online:
Book cover Magnetoencephalography

Abstract

Whole-head magnetoencephalography (MEG) systems to study cognitive processing in young children have been developed in recent years. Child MEG systems consist of a helmet-shaped sensor array that is designed to fit the smaller head sizes, thereby improving the signal-to-noise ratio of the MEG measurements acquired from children. The child MEG systems are expected to become effective tools for studies about developing brain functions because of their noninvasiveness, high temporal and spatial resolutions, and “acoustic quietness,” a feature that is currently unavailable in other brain functional imaging modalities. Clinical uses of the child MEG systems have also been acquiring increased interest. In this chapter, we describe the first whole-head child MEG system that we developed in 2008 and its applications to studies of the developing brain and its functions – such as language acquisition – and compare it with other child MEG systems developed elsewhere.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 649.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 849.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adachi Y, Miyamoto M, Kawai J, Kawabata M, Higuchi M, Ogata D, Uehara G, Ogata H, Kado H, Haruta Y, Tesan G (2010) Development of a whole-head child MEG system. IFMBE Proc 28:35–38

    Article  Google Scholar 

  • Adachi Y, Miyamoto M, Kawai J, Uehara G, Ogata H, Kawabata S, Sekihara K, Kado H (2011) Improvement of SQUID magnetometer system for extending application of spinal cord evoked magnetic field measurement. IEEE Trans Appl Supercond 21(3):485–488

    Article  CAS  Google Scholar 

  • Cheyne D, Jobst C, Tesan G, Crain S, Johnson B (2014) Movement-related neuromagnetic fields in preschool age children. Hum Brain Mapp 35:4858–4875

    Article  Google Scholar 

  • Drung D, Cantor R, Peters M, Scheer HJ, Koch H (1990) Low-noise high-speed dc superconducting quantum interference device magnetometer with simplified feedback electronics. Appl Phys Lett 57(4):406–408

    Article  CAS  Google Scholar 

  • Erné SN, Narci L, Pizzella V, Romani G (1987) The positioning problem in biomagnetic measurements: a solution for array of superconducting sensors. IEEE Trans Magn MAG-23:1319–1322

    Article  Google Scholar 

  • Etchell AC, Ryan M, Martin E, Johnson BW, Sowman PF (2016) Abnormal time course of low beta modulation in non-fluent preschool children: a magnetoencephalographic study of rhythm tracking. NeuroImage 125:953–963

    Article  Google Scholar 

  • Gaetz W, Gordon RS, Papadelis C, Fujisawa H, Rose D, Edgar JC, Schwartz ES, Roberts TPL (2015) Magnetoencephalography for clinical pediatrics: recent advances in hardware, methods, and clinical aspects. J Pediatr Epilepsy 4. https://doi.org/10.1055/s-0035-1563726

    Article  Google Scholar 

  • Gross J, Baillet S, Barnes GR, Henson RN, Hillebrand A, Jensen O, Jerbi K, Litvak V, Maess B, Oostenveld R, Parkkonen L, Taylor JR, Wassenhove V, Wibral M, Schoffelen JM (2013) Good practice for conducting and reporting MEG research. NeuroImage 65:349–363

    Article  Google Scholar 

  • Hasegawa C, Ikeda T, Yoshimura Y, Hiraishi H, Takahashi T, Furutani N, Hayashi N, Minabe Y, Hirata M, Asada M, Kikuchi M (2016) Sci Rep 6:34997. https://doi.org/10.1038/srep34977

    Article  CAS  Google Scholar 

  • He W, Brock J, Johnson BW (2015a) Face processing in the brains of pre-school aged children measured with MEG. NeuroImage 106:317–327

    Article  Google Scholar 

  • He W, Garrido MI, Sowman PF, Brock J, Johnson BW (2015b) Development of effective connectivity in the core network for face perception. Hum Brain Mapp 36:2161–2173

    Article  Google Scholar 

  • Higuchi M, Chinone K, Ishikawa N, Kado H, Kasai N, Nakanishi M, Koyanagi M, Ishibashi Y (1989) The position of magnetometer pick up coil in dewar by artificial signal source. In: Advance in biomagnetism, proceedings of the 7th international conference on biomagnetism, New York, pp 701–704

    Google Scholar 

  • Hirata M, Ikeda T, Kikuchi M, Kimura T, Hiraishi H, Yoshimura Y, Asada M (2014) Hyperscanning MEG for understanding mother-child cerebral interactions. Front Hum Neurosci 8:118. https://doi.org/10.3389/fnhm.2014.0018

    Article  PubMed  PubMed Central  Google Scholar 

  • Jaycox JM, Ketchen MB (1981) Planar coupling scheme for ultra low noise DC SQUIDs. IEEE Trans Magn M-17:400–403

    Article  Google Scholar 

  • Johnson BW, Crain S, Thornton R, Tesan G, Reid M (2010) Measurement of brain function in pre-school children using a custom sized whole-head MEG sensor array. Clin Neurophysiol 121:340–349

    Article  Google Scholar 

  • Kado H (1999) Method of assembling a magneto measuring apparatus. US patent, Patent number 5,896, 645

    Google Scholar 

  • Kado H, Higuchi M, Shimogawara M, Haruta Y, Adachi Y, Kawai J, Ogata H, Uehara G (1999) Magnetoencephalogram system developed at KIT. IEEE Trans Appl Supercond 9(2):4057–4062

    Article  Google Scholar 

  • Ketchen MB, Jaycox JM (1982) Ultra-low noise tunnel junction dc SQUID with a tightly coupled planar input coil. Appl Phys Lett 40:736–738

    Article  Google Scholar 

  • Kikuchi M, Shitamichi K, Yoshimura Y, Ueno S, Remijn G, Hirosawa T, Munesue T, Tsubokawa T, Haruta Y, Oi M, Higashida H, Minabe Y (2011) Lateralized theta wave connectivity and language performance in 2- to 5-year-old children. J Neurosci 31(42):14984–14988

    Article  CAS  Google Scholar 

  • Kikuchi M, Yoshimura Y, Mutou K, Minabe Y (2015) Magnetoencephalography in the study of children with autism spectrum disorder. Psychiatry Clin Neurosci. https://doi.org/10.1111/pcn.12338

    Article  Google Scholar 

  • Okada Y, Pratt K, Atwood C, Mascaranas A, Reineman R, Nurminen J, Paulson D (2006) BabySQUID: a mobile, high-resolution multichannel magnetoencephalography system for neonatal brain assessment. Rev Sci Instrum 77:024301

    Article  Google Scholar 

  • Okada Y, Hämäläinen M, Pratt K, Mascarenas A, Miller P, Han M, Robles J, Cavallini A, Power B, Sieng K, Sun L, Lew S, Doshi C, Ahtam B, Dinh C, Esch L, Grant E, Nummenmaa A, Paulson D (2016) BabyMEG: a whole-head pediatric magnetoencephalography system for human brain development research. Rev Sci Instrum 87:094301

    Article  Google Scholar 

  • Oyama D, Adachi Y, Higuchi M, Kawai J, Kobayashi K, Uehara G (2012) Real-time coil position monitoring system for biomagnetic measurements. Phys Procedia 36:280–285

    Article  Google Scholar 

  • Remijn GB, Kikuchi M, Shitamichi K, Ueno S, Yoshimura Y, Nagao K, Tsubokawa T, Kojima H, Higashida H, Minabe Y (2014) Front Hum Neurosci 8. https://doi.org/10.3389/fnhum.2014.00170

  • Roberts TPL, Paulson DN, Hirschkoff E, Pratt K, Mascarenas A, Miller P, Han M, Caffrey J, Kincade C, Power B, Murray R, Chow V, Fisk C, Ku M, Chudnovskaya D, Dell J, Golembski R, Lam P, Blaskey L, Kuschner E, Bloy L, Gaetz W, Edgar JC (2014) Artemis 123: development of a whole-head infant and young child MEG system. Front Hum Neurosci 8. https://doi.org/10.3389/fnhum.2014.00099

  • Sowman PF, Crain S, Harrison E, Johnson B (2014) Lateralization of brain activation in fluent and non-fluent preschool children: a magnetoencephalographic study of picture-naming. Front Hum Neurosci 8. https://doi.org/10.3389/fnhum.2014.00354

  • Stolk A, Todotovic A, Schoffelen J-M, Oostenveld R (2013) Online and offline tools for head movement compensation in MEG. NeuroImage 68:39–48

    Article  Google Scholar 

  • Tang H, Brock J, Johnson BW (2016) Sound envelope processing in the developing human brain: a MEG study. Clin Neurophysiol 127:1206–1215

    Article  Google Scholar 

  • Tesan G, Johnson BW, Reid M, Thornton R, Crain S (2010) Measurement of neuromagnetic brain function in pre-school children with custom sized MEG, JoVE, 36. http://www.jove.com/index/Details.stp?ID=1693. https://doi.org/10.3791/1693

  • Wang C, Sun L, Lichtenwalter B, Zerkle B, Okada Y (2016) Compact, ultra-low vibration, closed-cycle helium recycler for uninterrupted operation of MEG with SQUID magnetometers. Cryogenics 76:16–22

    Article  CAS  Google Scholar 

  • Yoshimura Y, Kikuchi M, Shitamichi K, Ueno S, Remijn GB, Haruta Y, Oi M, Munesue T, Tsubokawa T, Higashida H, Minabe Y (2012) Language performance and auditory evoked fields in 2- to 5-year-old children. Eur J Neurosci 35:644–650

    Article  Google Scholar 

  • Yoshimura Y, Kikuchi M, Ueno S, Shitamichi K, Remijn GB, Hiraishi H, Hasegawa C, Furutani N, Oi M, Munesue T, Tsubokawa T, Higashida H, Minabe Y (2014) A longitudinal study of auditory evoked field and language development in young children. NeuroImage 101:440–447

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshiaki Adachi .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Adachi, Y., Haruta, Y. (2019). Whole-Head Child MEG Systems and Their Applications. In: Supek, S., Aine, C. (eds) Magnetoencephalography. Springer, Cham. https://doi.org/10.1007/978-3-030-00087-5_27

Download citation

Publish with us

Policies and ethics