Skip to main content

Fetal Magnetoencephalography (fMEG)

  • Reference work entry
  • First Online:
Magnetoencephalography

Abstract

The human brain is one of the most complex organs which develops and adapts continuously over lifetime. Until now, neurophysiological research is mainly related to brain development from birth to adulthood, and neurophysiological research concerning prenatal human brain development only started in the last decades. Magnetoencephalography (MEG) is especially suited for fetal investigation, because it is completely noninvasive and not affected by the biological tissue separating the fetus from the outside. The first successful fetal MEG (fMEG) recording was reported in 1985 (Blum et al. Br J Obstet Gynaecol 92(12):1224–1229, 1985). Since the human brain in utero is highly vulnerable to internal and external influences, prenatal brain research is highly important to understand its development during that time period. Therefore, measurement techniques were improved, and basic research concerning brain development in utero was conducted. So far, mainly auditory and visual stimulation was used to assess fetal brain development by means of changes in signal processing speed or the development of basic forms of learning. The goal of basic fMEG research is to understand healthy fetal brain development and enable an early detection of possible deviations from it. In the future this may allow the development of early, even prenatal treatments and reduce the risk of adverse outcomes. This chapter gives an overview over structural and functional brain development and introduces the fMEG, a measurement technique to noninvasively assess functional fetal brain development in utero. Moreover, current fMEG studies are introduced, and the potential of the method of fMEG is illustrated and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 649.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 849.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arabin B, van Straaten HLM (2006) Fetal and neonatal hearing. In: Kurjak A, Chervenak FA (eds) Textbook of perinatal medicine, 2nd edn. Informa UK Ltd, Abingdon, pp 955–972

    Google Scholar 

  • Belliveau JW, Kennedy DN, McKinstry RC, Buchbinder BR, Weisskoff RM, Cohen MS, Vevea JM, Brady TJ, Rosen BR (1991) Functional mapping of the human visual cortex by magnetic resonance imaging. Science 254(5032):716–719

    Article  CAS  Google Scholar 

  • Birnholz JC, Benacerraf BR (1983) The development of human fetal hearing. Science 222(4623):516–518

    Article  CAS  Google Scholar 

  • Blum T, Saling E, Bauer R (1985) First magnetoencephalographic recordings of the brain activity of the human fetus. Br J Obstet Gynaecol 92(12):1224–1229

    Article  CAS  Google Scholar 

  • Casey BJ, Giedd JN, Thomas KM (2000) Structural and functional brain development and its relation to cognitive development. Biol Psychol 54(1–3):241–257

    Article  CAS  Google Scholar 

  • Cooper ERA (1945) The development of the human lateral geniculate body. Brain 68:222–239

    Article  CAS  Google Scholar 

  • Counter SA (2010) Fetal and neonatal development of the auditory system. In: Lagerkrantz H, Hanson MA, Ment LR, Peebles DM (eds) The newborn brain: neuroscience and clinical applications, 2nd edn. Cambridge University Press, Cambridge, UK, pp 163–184

    Chapter  Google Scholar 

  • Draganova R, Eswaran H, Murphy P, Huotilainen M, Lowery C, Preissl H (2005) Sound frequency change detection in fetuses and newborns, a magnetoencephalographic study. Neuroimage 28(2):354–361

    Article  Google Scholar 

  • Draganova R, Eswaran H, Murphy P, Lowery C, Preissl H (2007) Serial magnetoencephalographic study of fetal and newborn auditory discriminative evoked responses. Early Hum Dev 83(3):199–207

    Article  Google Scholar 

  • Eswaran H, Preissl H, Wilson JD, Murphy P, Robinson SE, Rose D, Vrba J, Lowery CL (2002a) Short-term serial magnetoencephalography recordings of fetal auditory evoked responses. Neurosci Lett 331:128–132

    Article  CAS  Google Scholar 

  • Eswaran H, Wilson J, Preissl H, Robinson S, Vrba J, Murphy P, Rose D, Lowery C (2002b) Magnetoencephalographic recordings of visual evoked brain activity in the human fetus. Lancet 360(9335):779–780

    Article  Google Scholar 

  • Eswaran H, Lowery CL, Wilson JD, Murphy P, Preissl H (2004) Functional development of the visual system in human fetus using magnetoencephalography. Exp Neurol 190:S52–S58

    Article  Google Scholar 

  • Eswaran H, Lowery CL, Wilson JD, Murphy P, Preissl H (2005) Fetal magnetoencephalography – a multimodal approach. Dev Brain Res 154:57–62

    Article  CAS  Google Scholar 

  • Giedd JN, Snell JW, Lange N, Rajapakse JC, Casey BJ, Kozuch PL, Vaituzis AC, Vauss YC, Hamburger SD, Kaysen D, Rapoport JL (1996) Quantitative magnetic resonance imaging of human brain development: ages 4–18. Cereb Cortex 6(4):551–560

    Article  CAS  Google Scholar 

  • Graven SN, Browne JV (2008) Visual development in the human fetus, infant, and young child. Newborn Infant Nurs Rev 8(4):194–201

    Article  Google Scholar 

  • Henver RF (2000) Development of connections in the human visual system during fetal mid-gestation: a dil-tracing study. J Neuropathol Exp Neurol 59(5):385–392

    Article  Google Scholar 

  • Hepper PG, Shahidullah BS (1994) Development of fetal hearing. Arch Dis Child 71(2):F81–F87

    Article  CAS  Google Scholar 

  • Hitchcock PF, Hickey TL (1980) Prenatal development of the human lateral geniculate nucleus. J Comp Neurol 194:395–411

    Article  CAS  Google Scholar 

  • Holst M, Eswaran H, Lowery C, Murphy P, Norton J, Preissl H (2005) Development of auditory evoked fields in human fetuses and newborns: a longitudinal MEG study. Clin Neurophysiol 116(8):1949–1955

    Article  Google Scholar 

  • Huppi PS, Warfield S, Kikinis R, Barnes PD, Zientara GP, Jolesz FA, Tsuji MK, Volpe JJ (1998) Quantitative magnetic resonance imaging of brain development in premature and mature newborns. Ann Neurol 43(2):224–235

    Article  CAS  Google Scholar 

  • Jedrychowski W, Perera FP, Jankowski J, Mrozek-Budzyn D, Mroz E, Flak E, Edwards S, Skarupa A, Lisowska-Miszczyk I (2009) Very low prenatal exposure to lead and mental development of children in infancy and early childhood: Krakow prospective cohort study. Neuroepidemiology 32(4):270–278

    Article  Google Scholar 

  • Kiefer I, Siegel E, Preissl H, Ware M, Schauf B, Lowery C, Eswaran H (2008) Delayed maturation of auditory-evoked responses in growth-restricted fetuses revealed by magnetoencephalographic recordings. Am J Obstet Gynecol 199(5):503.e501–503.e507

    Article  Google Scholar 

  • Kretschmann HJ, Kammradt G, Krauthausen I, Sauer B, Wingert F (1986) Brain growth in man. Bibl Anat 28:1–26

    Google Scholar 

  • Lengle JM, Chen M, Wakai RT (2001) Improved neuromagnetic detection of fetal and neonatal auditory evoked responses. Clin Neurophysiol 112:785–792

    Article  CAS  Google Scholar 

  • Lenroot RK, Giedd JN (2006) Brain development in children and adolescents: insights from anatomical magnetic resonance imaging. Neurosci Biobehav Rev 30:718–729

    Article  Google Scholar 

  • Matuz T, Govindan RB, Preissl H, Siegel ER, Muenssinger J, Murphy P, Ware M, Lowery CL, Eswaran H (2012) Habituation of visual evoked responses in neonates and fetuses: a MEG study. Dev Cogn Neurosci 2(3):303–316

    Article  Google Scholar 

  • Muenssinger J, Matuz T, Schleger F, Kiefer-Schmid I, Goelz R, Wacker-Gussmann A, Birbaumer N, Preissl H (2013) Auditory habituation in the fetus and neonate – a fMEG study. Dev Sci 16(2):287–295

    Article  Google Scholar 

  • Muhlhausler BS, Adam CL, McMillen IC (2008) Maternal nutrition and the programming of obesity: the brain. Organogenesis 4(3):144–152

    Article  Google Scholar 

  • Pinel JP (2003) Development of the nervous system. In: Pinel JP (ed) Biopsychology, 5th edn. Allyn and Bacon, Boston, pp 221–239

    Google Scholar 

  • Preissl H, Lowery CL, Eswaran H (2004) Fetal magnetoencephalography: current progress and trends. Exp Neurol 190(Suppl 1):S28–S36

    Article  Google Scholar 

  • Preissl H, Lowery CL, Eswaran H (2005) Fetal magnetoencephalography: viewing the developing brain in utero. In: Preissl H (ed) Magnetoencephalography. Elsevier Academic Press, San Diego, pp 2–20

    Google Scholar 

  • Pujol R, Lavigne-Rebillard M, Uziel A (1991) Development of the human cochlea. Acta Otolaryngol Suppl 482:7–12; discussion 13

    Article  CAS  Google Scholar 

  • Querleu D, Renard X, Versyp F, Paris-Delrue L, Crepin G (1988) Fetal hearing. Eur J Obstet Gynecol Reprod Biol 28(3):191–212

    Article  CAS  Google Scholar 

  • Schleussner E, Schneider U (2004) Developmental changes of auditory-evoked fields in fetuses. Exp Neurol 190(Suppl 1):S59–S64

    Article  Google Scholar 

  • Schneider U, Arnscheidt C, Schwab M, Haueisen J, Seewald HJ, Schleussner E (2011) Steroids that induce lung maturation acutely affect higher cortical function: a fetal magnetoencephalography study. Reprod Sci 18(1):99–106

    Article  Google Scholar 

  • Sheridan CJ, Preissl H, Siegel ER, Murphy P, Ware M, Lowery CL, Eswaran H (2008) Neonatal and fetal response decrement of evoked responses: a MEG study. Clin Neurophysiol 119(4):796–804

    Article  Google Scholar 

  • Singer LT, Nelson S, Short E, Min MO, Lewis B, Russ S, Minnes S (2008) Prenatal cocaine exposure: drug and environmental effects at 9 years. J Pediatr 153(1):105–111

    Article  CAS  Google Scholar 

  • Szitanyi P, Janda J, Poledne R (2003) Intrauterine undernutrition and programming as a new risk of cardiovascular disease in later life. Physiol Res 52(4):389–395

    CAS  PubMed  Google Scholar 

  • Talge NM, Neal C, Glover V (2007) Antenatal maternal stress and long-term effects on child neurodevelopment: how and why? J Child Psychol Psychiatry 48(3–4):245–261

    Article  Google Scholar 

  • Whitelaw A, Thoresen M (2000) Antenatal steroids and the developing brain. Arch Dis Child Fetal Neonatal 83:F154–F157

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jana Keune .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Keune, J., Eswaran, H., Preissl, H. (2019). Fetal Magnetoencephalography (fMEG). In: Supek, S., Aine, C. (eds) Magnetoencephalography. Springer, Cham. https://doi.org/10.1007/978-3-030-00087-5_23

Download citation

Publish with us

Policies and ethics