Skip to main content

Replacement of Toxic Feedstocks in Chemical Synthesis

  • Reference work entry
  • First Online:
Green Chemistry and Chemical Engineering
  • Originally published in
  • R. A. Meyers (ed.), Encyclopedia of Sustainability Science and Technology,

Glossary

Green chemistry:

IUPAC, Working Party on Synthetic Pathways and Processes in Green Chemistry, 2000. “The invention, design and application of chemical products and processes to reduce or to eliminate the use and generation of hazardous substancesPure and Applied Chemistry, 2000, Vol. 72, No. 7, pp. 1207–1228.

Chlorine-free chemistry:

Chemical reactions and processes which do not use chlorine reagents in the making of intermediates regardless if chorine is present or not in the products.

Carbamate, Urethane:

RNHCOOR′ R, R′ = Alk, Ar

Dialkyl carbonate:

ROCOOR′ R, R′ = Alk

Definition of the Subject

Phosgene and phosgene-like reagents are still employed in industry in the production of aliphatic and aromatic carbamates, along with their isocyanate derivatives. Those compounds are important precursors for the synthesis of pharmaceuticals, cosmetics, herbicides, pesticides, and polyurethanes commonly used in everyday life. However, despite their high reactivity and versatility,...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 379.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  1. Sartori G, Tundo P (2012) Special topic issue on chlorine free synthesis for green chemistry. Pure Appl Chem 84:411–860

    Article  Google Scholar 

  2. Cotarca L, Eckert H (2003) Phosgenations – a handbook. Wiley–VCH, Weinheim

    Book  Google Scholar 

  3. Tundo P, Musolino M, Aricò F (2018) The reactions of dimethyl carbonate and its derivatives. Green Chem 20:28–85

    Article  CAS  Google Scholar 

  4. Tojo M, Miyaji H (2007) Process for producing dialkyl carbonate and diol. EP1760059B1 Asahi Kasei Chemicals Corp

    Google Scholar 

  5. (a) Tundo P, He L-N, Lokteva E, Mota C (2016) Chemistry beyond chlorine. Springer, New York, NY; (b) Garcia-Herrero I, Cuéllar-Franca RM, Enríquez-Gutiérrez VM, Alvarez-Guerra M, Irabien A, Azapagic A (2016) Environmental assessment of dimethyl carbonate production: comparison of a novel electrosynthesis route utilizing CO2 with a commercial oxidative carbonylation process. ACS Sustain Chem Eng 4:2088–2097

    Google Scholar 

  6. Arico F, Tundo P (2010) Dimethyl carbonate: a modern green reagent and solvent. Russ Chem Rev 79:479–489

    Article  CAS  Google Scholar 

  7. (a) Musolino M, Andraos J, Aricò F (2018) An easy scalable approach to HMF employing DMC as reaction media: reaction optimization and comparative environmental assessment. ChemistrySelect 3:2359–2365; (b) Aricò F, Maranzana A, Musolino M, Tundo P (2018) 5-membered cyclic ethers via phenonium ion mediated cyclization through carbonate chemistry. Pure Appl Chem 90:93–107; (c) Aricò F, Aldoshin AS, Musolino M, Crisma M, Tundo P (2018) β–aminocarbonates in regioselective and ring expansion reactions. J Org Chem 83:236–243; (d) Aricò F, Bravo S, Crisma M, Tundo P (2016) 1,3-Oxazinan-2-ones via carbonate chemistry: a facile, high yielding synthetic approach. Pure Appl Chem 88:227–237; (e) Aricò F, Udrea I, Crisma M, Tundo P (2015) Azacrown ethers from mustard carbonate analogues. ChemPlusChem 80:471–474; (f) Aricò F, Evaristo S, Tundo P (2015) Synthesis of five- and six-membered heterocycles by dimethyl carbonate with catalytic amounts of nitrogen bicyclic bases. Green Chem 17:1176–1185; (g) Toniolo S, Aricò F, Tundo P (2014) A comparative environmental assessment for the synthesis of 1,3-Oxazin-2-one by metrics: greenness evaluation and blind spots. ACS Sustain Chem Eng 2:1056–1062; (h) Aricò F, Tundo P (2012) Dimethyl carbonate as a sacrificial molecule for the synthesis of 5-memebered N– and O–heterocycles. J Chin Chem Soc 59:1375–1384; (i) McElroy CR, Aricò F, Tundo P (2012) 1,3-Oxazinan-2-ones from amines and 1,3-diols through dialkyl carbonate chemistry. Synlett 23:1809–1815; (j) Aricò F, Toniolo U, Tundo P (2012) 5-membered N-heterocyclic compounds by dimethyl carbonate chemistry. Green Chem 14:58–61; (k) McElroy CR, Aricò F, Benetollo F, Tundo P (2012) Cyclization reaction of amines with dialkyl carbonates to yield 1,3-oxazinan-2-ones. Pure Appl Chem 84:707–719; (l) Aricò F, Tundo P (2012) Dimethyl carbonate as a sacrificial molecule for the synthesis of 5–memebered N– and O–heterocycles. J Chin Chem Soc 59:1375–1384; (m) Aricò F, Tundo P, Maranzana A, Tonachini G (2012) 5-membered cyclic ethers by reaction of 1,4-diols with dimethyl carbonate. ChemSusChem 5:1578–1586

    Google Scholar 

  8. (a) Tundo P, Bressanello S, Loris A, Sathicq G (2005) Direct synthesis of N-methylurethanes from primary amines with dimethyl carbonates. Pure Appl Chem 77:1719–1725; (b) Mertes H, Wilmes O, Nachtkamp K, Dahmer J, Meyn J (1995) Prodn. of 1,4-butylene di:isocyanate from 1,4-butane-di:amine. DE 4413580 Bayer A.G

    Google Scholar 

  9. Tundo P, Aricò F, Rosamilia A, Grego S, Rossi L (2008) Dimethyl carbonate: green solvent and Ambidentreagent. Green Chem React 206:201–220

    Google Scholar 

  10. Porta E, Cenni S, Pizzotti M, Crotti C (1985) Gazz Chim Ital 115:275

    CAS  Google Scholar 

  11. Curini M, Epifano F, Maltese F, Rosati O (2002) Carbamate synthesis from amines and dimethyl carbonate under ytterbium triflate catalysis. Tetrahedron Lett 43:4895–4897

    Article  CAS  Google Scholar 

  12. Distaso M, Quaranta E (2004) Group 3 metal (Sc, La) triflates as catalysts for the carbomethoxylation of aliphatic amines with dimethylcarbonate under mild conditions. Tetrahedron 60:1531–1539

    Article  CAS  Google Scholar 

  13. Han C, Porco JA (2007) Synthesis of carbamates and ureas using Zr(IV)-catalyzed exchange processes. Org Lett 9:1517–1520

    Article  CAS  Google Scholar 

  14. For reports on Ti–(IV)–catalyzed transamidation, see: (a) Eldred S E, Stone D A, Gellman S H, Stahl S S (2003) Catalytic transamidation under moderate conditions. J Am Chem Soc 125:3422–3423; (b) Kissounko DA, Hoerter JM, Guzei IA, Cui Q, Gellman SH, Stahl SS (2007) TiIV-mediated reactions between primary amines and secondary carboxamides: amidine formation versus transamidation. J Am Chem Soc 129:1776–1783

    Google Scholar 

  15. Han C, Lee JP, Lobkovsky E, Porco JAJ (2005) Catalytic ester-amide exchange using group (IV) metal Alkoxide-activator complexes. J Am Chem Soc 127:10039–11044

    Article  CAS  Google Scholar 

  16. (a) Aresta M, Quaranta E (1991) Mechanistic studies on the role of carbon dioxide in the synthesis of methylcarbamates from amines and dimethylcarbonate in the presence of CO2. Tetrahedron 47:9489; (b) Aresta M, Dibenedetto A, Quaranta E, Boscolo M, Larrson R (2001) The kinetics and mechanism of the reaction between carbon dioxide and a series of amines: observation and interpretation of an isokinetic effect. J Mol Catal 174:7–13

    Google Scholar 

  17. Selva M, Tundo P, Perosa A (2002) The synthesis of alkyl carbamates from primary aliphatic amines and dialkyl carbonates in supercritical carbon dioxide. Tetrahedron Lett 43:1217–1219

    Article  CAS  Google Scholar 

  18. Juárez R, Corma A, García A (2012) Activity of ceria and ceria–supported gold nanoparticles for the carbamoylation of aliphatic amines by dimethyl carbonate. Pure Appl Chem 84:685–694

    Article  Google Scholar 

  19. Carloni S, De Vos DE, Jacobs PA, Maggi R, Sartori G, Sartorio R (2002) Catalytic activity of MCM-41–TBD in the selective preparation of carbamates and unsymmetrical alkyl carbonates from diethyl carbonate. J Cat 205:199–204

    Article  CAS  Google Scholar 

  20. (a) Barcelo G, Grenouillat D, Senet J-P, Sennyey G (1990) Pentaalkylguanidines as etherification and esterification catalysts. Tetrahedron 46:1839–1848; (b) Rao SYV, De Vos DE, Jacobs PA (1997) 1,5,7-Triazabicyclo[4.4.0]dec-5-ene immobilized in MCM-41: a strongly basic porous catalyst. Angew Chem Int Ed Engl 36:2661–2663; (c) Blanc A, Macquarrie DJ, Valle S, Renard G, Quinn CR, Brunel D (2000) The preparation and use of novel immobilised guanidine catalysts in base-catalysed epoxidation and condensation reactions. Green Chem 2:283–288

    Google Scholar 

  21. Dunetz JR, Ciccolini RP, Froling M, Paap SM, Allen AJ, Holmes AB, Tester JW, Danheiser RL (2005) Pictet–Spengler reactions in multiphasic supercritical carbon dioxide/CO2-expanded liquid media. In situ generation of carbamates as a strategy for reactions of amines in supercritical carbon dioxide. Chem Commun 0:4465–4467

    Article  CAS  Google Scholar 

  22. Tundo P, McElroy CR, Aricò F, Rigo M (2010) Carbamates from reactions of amines with dialkylcarbonates: a study of leaving and entering groups. Synlett 10:1567–1571

    Article  Google Scholar 

  23. Zeng R, Bao L, Sheng H, Sun L, Chen M, Feng Y, Zhu M (2016) Heterobimetallic dinuclear lanthanide alkoxide complexes as acid-base bifunctional catalysts for synthesis of carbamates under solvent–free conditions. RSC Adv 6:78576–78584

    Article  CAS  Google Scholar 

  24. Distaso M, Quaranta E (2006) Highly selective carbamation of aliphatic diamines under mild conditions using Sc(OTf)3 as catalyst and dimethyl carbonate as a phosgene substitute. Appl Catal B Environ 66:72–80

    Article  CAS  Google Scholar 

  25. Distaso M, Quaranta E (2008) Sc(OTf)3-catalyzed carbomethoxylation of aliphatic amines with dimethyl carbonate (DMC): DMC activation by η1-O (CO) coordination to Sc (III) and its relevance to catalysis. J Catal 253:278–288

    Article  CAS  Google Scholar 

  26. Deleon RG, Kobayashi A, Yamauchi T, Ooishi J, Baba T, Sasaki M, Hiarata F (2002) Catalytic Methoxycarbonylation of 1,6-hexanediamine with dimethyl carbonate to Dimethylhexane-1,6-dicarbamate using bi(NO3)3. Appl Catal A Gen 225:43–49

    Article  Google Scholar 

  27. Li H-Q, Cao Y, Li X-T, Wang L-G, Li F-J, Zhu GY (2014) Heterogeneous catalytic methoxycarbonylation of 1,6-Hexanediamine by dimethyl carbonate to dimethylhexane-1,6-dicarbamate. Ind Eng Chem Res 53:626–634

    Article  CAS  Google Scholar 

  28. (a) Vauthey I, Falot V, Gozzi C, Fache F, Lemaire M (2000) An environmentally benign access to carbamates and ureas. Tetrahedron Lett 41:6347–6350; (b) Baba T, Fujiwara M, Oosaku A, Kobayashi A, Deleon RG, Ono Y (2002) Catalytic synthesis of N-alkyl carbamates by methoxycaronylation of alkylamines with dimethyl carbonate using Pb(NO3)2. Appl Catal A Gen 227:1–6

    Google Scholar 

  29. Wang P, Fei Y, Li Q, Deng Y (2016) Effective synthesis of dimethylhexane-1,6-dicarbamate from 1,6-hexanediamine and dimethyl carbonate using 3-amino-1,2,4-triazole potassium as a solid base catalyst at ambient temperature. Green Chem 18:6681–6686

    Article  CAS  Google Scholar 

  30. Belfadhel HA, Brack H-P, Godoy-Lopez R, Willemse DJPM (2010) Method for making carbamates, ureas and isocyanates. US2010113819 Sabic Innovative Plastics

    Google Scholar 

  31. (a) Gupte SP, Shivarkar AB, Chaudhari RV (2001) Carbamate synthesis by solid-base catalyzed reaction of disubstituted ureas and carbonates. Chem Commun 0:2620–2621; (b) Gupte SP, Chaudari RV, Anandkumar BS, Mulla SA (2005) Process for preparing carbamates. WO2005063698 Council of Scientific & Industrial Research

    Google Scholar 

  32. Schweitzer C (1944) Chemical process and products. US2409712 Du Pont de Nemours & Co.

    Google Scholar 

  33. (a) Kim H S, Kim H, Oh J Y, Shin S, Kim S S, Lim K S, Choi J D (2014) Method for Preparing aliphatic diisocyanate. University-Industry Cooperation Group of Kyung Hee University US2014303399; (b) Shinohata M, Miyake N (2009) Process for producing isocyanate. EP2088138 Asahi Kasei Chemicals Corporation; (c) Shinohata M, Miyake N (2010) Method for production of isocyanate using composition comprising carbamic acid ester and aromatic hydroxy compound, and composition for transport or storage of carbamic acid ester. EP2147909 Asahi Kasei Chemicals Corporation

    Google Scholar 

  34. (a) Cui M, Chen X, Yang Y, Tang J, Qiao X, Fei Z (2016) Synthetic method of isophorone diamino methyl formate. CN103980160 Nanjing University of Technology; (b) Yamamoto Y, Yoshida Y, Araki M (2012) Process for preparing a carbamate compound US2012302782; (c) Suzuki K, Araki M, Yoshida Y (2015) Method for producing a carbamate compound. CN104837813 Ube Industries Ltd.

    Google Scholar 

  35. Kumar S, Jain SL (2013) L-Proline-TBAB-catalyzed phosgene free synthesis of methyl carbamates from amines and dimethyl carbonate. New J Chem 37:2935–2938

    Article  CAS  Google Scholar 

  36. Deng Y, Guo X, Shi F, Zhang Q, Ma X, Lu L, Li J, Tian X, Ma Y, Shang J, Cui X, Wang LL, Zhang H (2011) Method for preparing isocyanates by liquid-phase thermal cracking. US2011/21810 Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences

    Google Scholar 

  37. Grego S, Aricò F, Tundo P (2012) Highly selective phosgene-free carbamoylation of aniline by dimethyl carbonate under continuous-flow conditions. Pure Appl Chem 84(3):695–705

    Article  CAS  Google Scholar 

  38. Fu Z-H, Ono Y (1994) Synthesis of methyl N-phenyl carbamate by methoxycarbonylation of aniline with dimethyl carbonate using Pb compounds as catalysts. J Mol Catal 91:399–405

    Article  CAS  Google Scholar 

  39. Ono Y (1997) Catalysis in the production and reactions of dimethyl carbonate, an environmentally benign building block. Appl Catal A Gen 155:133–166

    Article  CAS  Google Scholar 

  40. (a) Zhao X, Wang Y, Wang S, Yang H, Zhang J (2002) Synthesis of MDI from dimethyl carbonate over solid catalysts. Ind Eng Chem Res 41:5139–5144; (b) Wang Y, Zhao X, Li F, Wang S, Zhang J (2001) Catalytic synthesis of toluene-2,4-diisocyanate from dimethyl carbonate. J Chem Technol Biotechnol 76:857–861; (c) Juarez R, Conception P, Corma A, Fornes V, Garcia H (2010) Gold–catalyzed phosgene–free synthesis of polyurethane precursors. Angew Chem Int Ed 49:1286–1290

    Google Scholar 

  41. Grego S, Aricò F, Tundo P (2013) Highly selective phosgene-free carbamoylation of aniline by dimethyl carbonate under continuous-flow conditions. Org Process Res Dev 17:679–683

    Article  CAS  Google Scholar 

  42. Tundo P, Grego S, Rigo M, Paludetto R (2009) Process for the production of aromatic urethanes. EP 2199278A1

    Google Scholar 

  43. Matsunaga F, Yasuhara M (1992) Method of condensing N-phenyl carbamates. EP0410684

    Google Scholar 

  44. Clerici G M, Bellussi G, Romano U (1993) Process for preparation of 4,4′-diaminodiphenyl-methane and its derivatives. US5241119

    Google Scholar 

  45. Sundermann R, Konig K, Engbert T, Becher G, Hammen G (1983) Process for the preparation of polyisocyanates. US4388246

    Google Scholar 

  46. Qiu Z, Wang J, Kang M, Li Q, Wang X (2008) Formation of intermediate and by-products in synthesis of 4,4′-methylenedimethyldiphenylcarbamate. Catal Lett 124:243–247

    Article  CAS  Google Scholar 

  47. (a) Shinohata M, Miyake N (2011) Process for producing isocyanate using diaryl carbonate. EP2275405 Asahi Kasei Chemicals Corporation; (b) Shinohata M, Miyake N (2011) Process for producing isocyanate using Diaryl carbonate. US2011054211 Asahi Kasei Chemicals Corporation

    Google Scholar 

  48. Baba T, Kobayashi A, Yamauchi T, Tanaka H, Aso S, Inomata M, Kawanami Y (2002) Catalytic methoxycarbonylation of aromatic diamines with dimethyl carbonate to their dicarbamates using zinc acetate. Catal Lett 82:193–197

    Article  CAS  Google Scholar 

  49. Juarez R, Padilla A, Corma A, Garcıa H (2008) Organocatalysts for the reaction of dimethyl carbonate with 2,4-Diaminotoluene. Ind Eng Chem Res 47:8043–8047

    Article  CAS  Google Scholar 

  50. (a) Simon L, Goodman JM (2007) The mechanism of TBD-catalyzed ring opening polymerization of cyclic esters. J Org Chem 72:9656–9662; (b) Pratt RC, Lohmeijer BGG, Long DA, Waymouth RM, Hedrick JL (2006) Triazabicyclodecene: a simple bifunctional organocatalyst for acyl transfer and ring-opening polymerization of cyclic esters. J Am Chem Soc 128:4556–4557

    Google Scholar 

  51. (a) Mukherjee S, Yang JW, Hoffmann S, List B (2007) Asymmetric enamine catalysis. Chem Rev 107:5471–5569; (b) Chen XH, Luo SW, Tang Z, Cun LF, Mi AQ, Jiang YZ, Gong LZ (2007) Chem Eur J 13:689–701; (c) Limbach M (2005) ‘Five at one stroke’: proline and small peptides in the stereoselective de novo synthesis and enantiotopic functionalization of carbohydrates. Chem Biodivers 2:825–836

    Google Scholar 

  52. Aresta M, Dibenedetto A, Quaranta E (1998) Reaction of aromatic diamines with diphenyl carbonate catalyzed by phosphorus acids: a new clean synthetic route to mono- and dicarbamates. Tetrahedron 54:14145–14156

    Article  CAS  Google Scholar 

  53. Cookson RC, Gupte SS, Stevens IDR, Watts CT (1971) 4-Phenyl-1,2,4-triazoline-3,5-dione. Org Synth 51:121

    Article  CAS  Google Scholar 

  54. Tsuji T, Kosower EM (1971) Diazenes. VI. Alkyldiazenes. J Am Chem Soc 93:1992–1999

    Article  Google Scholar 

  55. Vlasak P, Parik P, Klicnar J, Mlndl J (1998) Synthesis of ring-substituted phenyl hydrazinecarboxylates and study of their protonation in dimethyl sulfoxide solutions. Collect Czechoslov Chem Commun 63:793–802

    Article  CAS  Google Scholar 

  56. (a) Rosamilia AE, Aricò F, Tundo P (2008) Reaction of the ambident electrophile dimethyl carbonate with the ambident nucleophile phenylhydrazine. J Org Chem 73:1559–1562; (b) Rosamilia AE, Aricò F, Tundo P (2008) Insight into the hard−soft acid−base properties of differently substituted phenylhydrazines in reactions with dimethyl carbonate. J Phys Chem B 112:14525–14529

    Google Scholar 

  57. Carafa M, Distaso M, Mele V, Trani F, Quaranta E (2008) Superbase-promoted direct N-carbonylation of pyrrole with carbonic acid diesters. Tetrahedron Lett 49:3691–3696

    Article  CAS  Google Scholar 

  58. Quaranta E, Carafa M, Trani F (2009) The reaction of pyrrole with dimethyl carbonate under phosphazene catalysis: N-methoxycarbonylation vs N-methylation. Appl Cat B 91:380–388

    Article  CAS  Google Scholar 

  59. Fu X, Zhang Z, Li C, Wang L, Ji H, Yang Y, Zou T, Gao G (2009) N-heterocyclic carbomethoxylation catalyzed by ionic liquids in the presence of dimethyl carbonate. Cat Commun 10:665–668

    Article  CAS  Google Scholar 

  60. (a) Voit BI, Lederer A (2009) Hyperbranched and highly branched polymer architectures – synthetic strategies and major characterization aspects. Chem Rev 109:5924–5973; (b) Kreye O, Mutlu H, Meier MAR (2013) Sustainable routes to polyurethane precursors. Green Chem 15:1431–1435

    Google Scholar 

  61. (a) Murdock KC (1968) 2-Oxazolidinones from an N-dealkylation reaction of phosgene with dialkylaminoalkanols. Isolation and reactivities of an N-acyl quaternary ammonium intermediate. J Org Chem 33:1367–1371; (b) Trifunovic S, Dimitrijevic D, Vasic G, Vukicevic RD, Radulovic N, Vukicevic M, Heinemann FW (2010) New simple synthesis of N-substituted 1,3-oxazinan-2-ones. Synthesis 6:943–946; (c) Shibata I, Nakamura K, Baba A, Matsuda H (1989) Formation of N-Tributylstannyl heterocycle from bis(tributyltin) oxide and ω-haloalkyl isocyanate. One-pot convenient synthesis of 2-oxazolidinones and tetrahydro-2H-1,3-oxazin-2-one. Bull Chem Soc Jpn 62:853–859; (d) Mangelinckx S, Nural Y, Dondas HA, Denolf B, Sillanpaa R, De Kimpe N (2010) Diastereoselective synthesis of 6-functionalized 4-aryl-1,3-oxazinan-2-ones and their application in the synthesis of 3-aryl-1,3-aminoalcohols and 6-arylpiperidine-2,4-diones. Tetrahedron 66:4115–4124

    Google Scholar 

Further Reading

  1. Tundo P, He L-N, Lokteva E, Mota C (2016) Chemistry beyond chlorine. Springer, Cham

    Book  Google Scholar 

  2. Tundo P, Andraos J (2014) Green syntheses, vol 1. CRC Press, Taylor & Francis Group, Boca Raton

    Book  Google Scholar 

  3. García-Martínez J, Serrano-Torregrosa E (2011) The chemical element: chemistry’s contribution to our global future. Wiley-VCH, Weinheim

    Book  Google Scholar 

  4. Anastas PT, Constable DJC, Jimenez Gonzales C (2018) Green metrics, vol 11. Wiley-VCH, Weinheim

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pietro Tundo .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Tundo, P., Musolino, M., Aricò, F. (2019). Replacement of Toxic Feedstocks in Chemical Synthesis. In: Han, B., Wu, T. (eds) Green Chemistry and Chemical Engineering. Encyclopedia of Sustainability Science and Technology Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-9060-3_1002

Download citation

Publish with us

Policies and ethics