Skip to main content

Cellular Automata in Hyperbolic Spaces

  • Reference work entry
  • First Online:
Book cover Cellular Automata

Part of the book series: Encyclopedia of Complexity and Systems Science Series ((ECSSS))

  • 1236 Accesses

  • Originally published in
  • R. A. Meyers (ed.), Encyclopedia of Complexity and Systems Science, © Springer Science+Business Media New York 2015

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 549.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Berger R (1966) The undecidability of the domino problem. Mem Am Math Soc 66:1–72

    MathSciNet  MATH  Google Scholar 

  • Chelghoum K, Margenstern M, Martin B, Pecci I (2004) Cellular automata in the hyperbolic plane: proposal for a new environment. Lect Notes Comput Sci 3305:678–687, proceedings of ACRI’2004, Amsterdam, October, 25–27, 2004

    MATH  Google Scholar 

  • Cook M (2004) Universality in elementary cellular automata. Complex Syst 15(1):1–40

    MathSciNet  MATH  Google Scholar 

  • Fraenkel AS (1985) Systems of numerations. Am Math Mon 92:105–114

    MathSciNet  Google Scholar 

  • Gromov M (1981) Groups of polynomial growth and expanding maps. Publ Math l’IHES 53:53–73

    MathSciNet  MATH  Google Scholar 

  • Hedlund G (1969) Endomorphisms and automorphisms of shift dynamical systems. Math Syst Theory 3:320–375

    MathSciNet  MATH  Google Scholar 

  • Herrmann F, Margenstern M (2003) A universal cellular automaton in the hyperbolic plane. Theor Comp Sci 296:327–364

    MathSciNet  MATH  Google Scholar 

  • Iwamoto Ch, Margenstern M (2003) A survey on the complexity classes in hyperbolic cellular automata. Proceedings of SCI’2003, V, pp 31–35

    Google Scholar 

  • Iwamoto Ch, Margenstern M, Morita K, Worsch Th (2002) Polynomial-time cellular automata in the hyperbolic plane accept exactly the PSPACE languages. SCI’2002. Orlando, pp 411–416

    Google Scholar 

  • Kari J (2007) The tiling problem revisited. Lect Notes Comput Sci 4664:72–79

    MATH  Google Scholar 

  • Lindgren K, Nordahl MG (1990) Universal computations in simple one-dimensional cellular automata. Complex Syst 4:299–318

    MathSciNet  MATH  Google Scholar 

  • Margenstern M (2000) New tools for cellular automata in the hyperbolic plane. J Univ Comp Sci 6(12):1226–1252

    MathSciNet  MATH  Google Scholar 

  • Margenstern M (2002a) A contribution of computer science to the combinatorial approach to hyperbolic geometry, SCI’2002, 14–19 July 2002. Orlando

    Google Scholar 

  • Margenstern M (2002b) Revisiting Poincaré’s theorem with the splitting method, talk at Bolyai’200, International Conference on Geometry and Topology, Cluj-Napoca, Romania, 1–3 October 2002

    Google Scholar 

  • Margenstern M (2003) Implementing cellular automata on the triangular grids of the hyperbolic plane for new simulation tools, ASTC’2003. Orlando, 29 Mar- 4 Apr

    Google Scholar 

  • Margenstern M (2004) The tiling of the hyperbolic 4D space by the 120-cell is combinatoric. J Univ Comp Sci 10(9):1212–1238

    MathSciNet  Google Scholar 

  • Margenstern M (2006a) A new way to implement cellular automata on the penta- and heptagrids. J Cell Autom 1(1):1–24

    MathSciNet  MATH  Google Scholar 

  • Margenstern M (2006b) A universal cellular automaton with five states in the 3D hyperbolic space. J Cell Autom 1(4):317–351

    Google Scholar 

  • Margenstern M (2007a) On the communication between cells of a cellular automaton on the penta- and heptagrids of the hyperbolic plane. J Cell Autom (to appear)

    Google Scholar 

  • Margenstern M (2007b) About the domino problem in the hyperbolic plane, a new solution. arXiv:cs/0701096, (Jan 2007), p 60

    Google Scholar 

  • Margenstern M (2007c) Cellular automata in hyperbolic spaces, theory, vol 1. Old City Publishing, Philadelphia, 422p

    MATH  Google Scholar 

  • Margenstern M (2008a) A uniform and intrinsic proof that there are universal cellular automata in hyperbolic spaces. J Cell Autom 3(2):157–180

    MathSciNet  MATH  Google Scholar 

  • Margenstern M (2008b) Cellular automata in hyperbolic spaces, volume 2, implementation and computation. Old City Publishing, Philadelphia, 360p

    MATH  Google Scholar 

  • Margenstern M (2008c) The domino problem of the hyperbolic plane is undecidable. Theor Comp Sci 407:29–84

    MathSciNet  MATH  Google Scholar 

  • Margenstern M (2008d) On a characterization of cellular automata in tilings of the hyperbolic plane. Int J Found Comp Sci 19(5):1235–1257

    MathSciNet  MATH  Google Scholar 

  • Margenstern M (2008e) The finite tiling problem is undecidable in the hyperbolic plane. Int J Found Comp Sci 19(4):971–982

    MathSciNet  MATH  Google Scholar 

  • Margenstern M (2009a) The periodic domino problem is undecidable in the hyperbolic plane. Lect Notes Comput Sci 5797:154–165

    MATH  Google Scholar 

  • Margenstern M (2009b) The injectivity of the global function of a cellular automaton in the hyperbolic plane is undecidable. Fundam Inform 94(1):63–99

    MathSciNet  MATH  Google Scholar 

  • Margenstern M (2009c) About the garden of Eden theorems for cellular automata in the hyperbolic plane. Electron Notes Theor Comp Sci 252:93–102

    MathSciNet  MATH  Google Scholar 

  • Margenstern M (2010a) A weakly universal cellular automaton in the hyperbolic 3D space with three states. Discrete Mathematics and Theoretical Computer Science. Proceedings of AUTOMATA’2010, pp 91–110

    Google Scholar 

  • Margenstern M (2010b) Towards the frontier between decidability and undecidability for hyperbolic cellular automata. Lect Notes Comput Sci 6227:120–132

    MATH  Google Scholar 

  • Margenstern M (2010c) An upper bound on the number of states for a strongly universal hyperbolic cellular automaton on the pentagrid, JAC’2010, 15–17 Dec 2010. Turku, Finland, Proceedings, Turku Center for Computer Science 2010. ISBN 978-952-12-2503-1, 168-179

    Google Scholar 

  • Margenstern M (2011a) A new weakly universal cellular automaton in the 3D hyperbolic space with two states. Lect Notes Comput Sci 6945:205–2017

    MATH  Google Scholar 

  • Margenstern M (2011b) A universal cellular automaton on the heptagrid of the hyperbolic plane with four states. Theor Comp Sci 412:33–56

    MathSciNet  MATH  Google Scholar 

  • Margenstern M (2012) A protocol for a message system for the tiles of the heptagrid, in the hyperbolic plane. Int J Satell Commun Policy Manag 1(2–3):206–219

    Google Scholar 

  • Margenstern M (2013a) Small universal cellular in hyperbolic spaces, a collection of jewels. Emergence, Complexity and Computation, Springer, p 320

    Google Scholar 

  • Margenstern M (2013b) About strongly universal cellular automata. Proceedings of MCU’2013, (2013) EPTCS 128, 93–125

    MathSciNet  Google Scholar 

  • Margenstern M, Morita K (1999) A polynomial solution for 3-SAT in the space of cellular automata in the hyperbolic plane. J Univ Comput Syst 5:563–573

    MathSciNet  MATH  Google Scholar 

  • Margenstern M, Morita K (2001) NP problems are tractable in the space of cellular automata in the hyperbolic plane. Theor Comp Sci 259:99–128

    MathSciNet  MATH  Google Scholar 

  • Margenstern M, Skordev G (2003a) The tilings {p, q} of the hyperbolic plane are combinatoric, SCI’2003, V, pp 42–46

    Google Scholar 

  • Margenstern M, Skordev M (2003b) Tools for devising cellular automata in the hyperbolic 3D space. Fundam Inform 58(2):369–398

    MathSciNet  MATH  Google Scholar 

  • Margenstern M, Song Y (2008) A universal cellular automaton on the ternary heptagrid. Electron Notes Theor Comp Sci 223:167–185

    MATH  Google Scholar 

  • Margenstern M, Song Y (2009) A new universal cellular automaton on the pentagrid. Parallel Process Lett 19(2):227–246

    MathSciNet  Google Scholar 

  • Morgenstein D, Kreinovich V (1995) Which algorithms are feasible and which are not depends on the geometry of space-time. Geombinatorics 4(3):80–97

    MATH  Google Scholar 

  • Martin B (2005) VirHKey: a virtual hyperbolic keyboard with gesture interaction and visual feedback for mobile devices, MobileHCI’05, Sept. Salzburg

    Google Scholar 

  • Robinson RM (1971) Undecidability and nonperiodicity for tilings of the plane. Invent Math 12:177–209

    MathSciNet  MATH  Google Scholar 

  • Robinson RM (1978) Undecidable tiling problems in the hyperbolic plane. Invent Math 44:259–264

    MathSciNet  MATH  Google Scholar 

  • Róka Z (1994) One-way cellular automata on Cayley graphs. Theor Comp Sci 132:259–290

    MathSciNet  MATH  Google Scholar 

  • Stewart I (1994) A subway named turing, mathematical recreations in scientific American. pp 90–92

    Google Scholar 

  • Wolfram S (2002) A new kind of science. Wolfram Media

    Google Scholar 

Download references

Acknowledgment

The author again thanks Andrew Adamatzky for giving him the task to write the first issue of this entry. He is also much in debt to Andrew Spencer for asking him this new version.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maurice Margenstern .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Margenstern, M. (2018). Cellular Automata in Hyperbolic Spaces. In: Adamatzky, A. (eds) Cellular Automata. Encyclopedia of Complexity and Systems Science Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-8700-9_53

Download citation

Publish with us

Policies and ethics