Skip to main content

Classification of Cellular Automata

  • Reference work entry
  • First Online:
Cellular Automata

Part of the book series: Encyclopedia of Complexity and Systems Science Series ((ECSSS))

  • Originally published in
  • R. A. Meyers (ed.), Encyclopedia of Complexity and Systems Science, © Springer-Verlag 2009

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 549.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Adamatzky A (1994) Identification of cellular automata. Taylor & Francis, London

    MATH  Google Scholar 

  • Amoroso S, Patt YN (1972) Decision procedures for surjectivity and injectivity of parallel maps for tesselation structures. J Comput Syst Sci 6:448–464

    Article  MATH  Google Scholar 

  • Baldwin JT (2002) Computation versus simulation. http://www.math.uic.edu/%7Ejbaldwin/pub/cafom.ps. Accessed May 2007

  • Baldwin JT, Shelah S (2000) On the classifiability of cellular automata. Theor Comput Sci 230(1–2):117–129

    Article  MathSciNet  MATH  Google Scholar 

  • Baumslag G (2007) Magnus. http://caissny.org/. Accessed May 2007

  • Beal M-P, Perrin D (1997) Symbolic dynamics and finite automata. In: Rozenberg G, Salomaa A (eds) Handbook of formal languages. Springer, Berlin

    Google Scholar 

  • Bennett CH (1973) Logical reversibility of computation. IBM J Res Dev 17:525–532

    Article  MathSciNet  MATH  Google Scholar 

  • Börger E, Grädel E, Gurevich Y (2001) The classical decision problem. Springer, Berlin

    MATH  Google Scholar 

  • Cook M (2004) Universality in elementary cellular automata. Complex Syst 15(1):1–40

    MathSciNet  MATH  Google Scholar 

  • Culik K (1987) On invertible cellular automata. Complex Syst 1(6):1035–1044

    MathSciNet  MATH  Google Scholar 

  • Culik K, Sheng Y (1988) Undecidability of CA classification schemes. Complex Syst 2(2):177–190

    MathSciNet  MATH  Google Scholar 

  • Davis M (1956) A note on universal Turing machines. In: Shannon CE, McCarthy J (eds) Automata studies. Annals of mathematics studies, vol 34. Princeton University Press, Princeton, pp 167–175

    Google Scholar 

  • Davis M (1957) The definition of universal Turing machines. Proc Am Math Soc 8:1125–1126

    Article  MathSciNet  MATH  Google Scholar 

  • Delorme M, Mazoyer J (1999) Cellular automata: a parallel model. Mathematics and its applications, vol 460. Kluwer, Dordrecht

    Book  MATH  Google Scholar 

  • Delvenne J-C, Kůrka P, Blondel V (2006) Decidability and universality in symbolic dynamical systems. Fundamenta Informaticae 74(4):463–490

    MathSciNet  MATH  Google Scholar 

  • Durand-Lose J (2001) Representing reversible cellular automata with reversible block automata. Disc Math Theor Comp Sci Proc AA:145–154

    Google Scholar 

  • Elgaard J, Klarlund N, Møller A (1998) MONA 1.x: new techniques for WS1S and WS2S. In: Proceeding of the 10th international conference on computer-aided verification, CAV ’98. LNCS, vol 1427. Springer, Berlin, pp 516–520

    Chapter  Google Scholar 

  • Friedberg RM (1957) Two recursively enumerable sets of incomparable degrees of unsolvability. Proc Natl Acad Sci U S A 43:236–238

    Article  MATH  Google Scholar 

  • Grädel E, Thomas W, Wilke T (eds) (2002) Automata, logics, and infinite games, LNCS, vol 2500. Springer, Berlin

    MATH  Google Scholar 

  • Gutowitz H (1996a) Cellular automata and the sciences of complexity, part I. Complexity 1(5):16–22

    Article  MathSciNet  Google Scholar 

  • Gutowitz H (1996b) Cellular automata and the sciences of complexity, part II. Complexity 1(6)

    Article  MathSciNet  Google Scholar 

  • Harrington L, Shelah S (1982) The undecidability of the recursively enumerable degrees. Bull Am Math Soc 6:79–80

    Article  MathSciNet  MATH  Google Scholar 

  • Head T (1989) Linear CA: injectivity from ambiguity. Complex Syst 3(4):343–348

    MATH  Google Scholar 

  • Hedlund GA (1969) Endomorphisms and automorphisms of the shift dynamical system. Math Syst Theory 3:320–375

    Article  MathSciNet  MATH  Google Scholar 

  • Hooper PK (1966) The undecidability of the Turing machine immortality problem. J Symb Log 31(2):219–234

    Article  MathSciNet  MATH  Google Scholar 

  • Kari J (1990) Reversibility of 2D cellular automata is undecidable. Physica D 45:397–385

    Article  MATH  Google Scholar 

  • Kůrka P (1997) Languages, equicontinuity and attractors in cellular automata. Ergod Th Dyn Syst 17:417–433

    Article  MathSciNet  MATH  Google Scholar 

  • Kůrka P (2003) Topological and symbolic dynamics, Cours Spécialisés, vol 11. Societe Mathematique de France, Paris

    MATH  Google Scholar 

  • Langton CG (1990) Computation at the edge of chaos. Physica D 42:12–37

    Article  MathSciNet  Google Scholar 

  • Lecerf Y (1963) Machine de Turing réversible. Insolubilité récursive en n ∈ N de l’équation u = θnu, où θ est un “isomorphisme de codes”. C R Acad Sci Paris 257:2597–2600

    Google Scholar 

  • Lerman M (1983) Degrees of unsolvability. Perspectives in mathematical logic. Springer, Berlin

    Book  Google Scholar 

  • Li W, Packard N (1990) The structure of the elementary cellular automata rule space. Complex Syst 4(3):281–297

    MathSciNet  MATH  Google Scholar 

  • Li W, Packard N, Langton CG (1990) Transition phenomena in CA rule space. Physica D 45(1–3):77–94

    Article  MathSciNet  MATH  Google Scholar 

  • Libkin L (2004) Elements of finite model theory. Springer, Berlin

    Book  MATH  Google Scholar 

  • Manzini G, Margara L (1999) A complete and efficiently computable topological classification of D-dimensional linear cellular automata over Zm. Theor Comput Sci 221(1–2):157–177

    Article  MATH  Google Scholar 

  • Mazoyer J (1987) A six state minimal time solution to the firing squad synchronization problem. Theor Comput Sci 50:183–238

    Article  MathSciNet  MATH  Google Scholar 

  • Mitchell M, Crutchfield JP, Hraber PT (1994) Evolving cellular automata to perform computations: mechanisms and impediments. Physica D (75):361–369

    Article  MATH  Google Scholar 

  • Morita K (1994) Reversible cellular automata. J Inf Process Soc Japan 35:315–321

    Google Scholar 

  • Morita K (1995) Reversible simulation of one-dimensional irreversible cellular automata. Theor Comput Sci 148:157–163

    Article  MathSciNet  MATH  Google Scholar 

  • Morita K, Harao M (1989) Computation universality of 1 dimensional reversible (injective) cellular automata. Trans Inst Electron, Inf Commun Eng E 72:758–762

    Google Scholar 

  • Muchnik AA (1956) On the unsolvability of the problem of reducibility in the theory of algorithms. Dokl Acad Nauk SSSR 108:194–197

    MathSciNet  MATH  Google Scholar 

  • Neary R, Woods D (2006a) On the time complexity of 2-tag systems and small universal turing machines. In: FOCS. IEEE Comput Soc, Berkeley, pp 439–448

    Google Scholar 

  • Neary R, Woods D (2006b) Small fast universal turing machines. Theor Comput Sci 362(1–3):171–195

    Article  MathSciNet  MATH  Google Scholar 

  • Oliveira G, Oliveira P, Omar N (2001) Definition and application of a five-parameter characterization of one-dimensional cellular automata rule space. Artif Life 7(3):277–301

    Article  Google Scholar 

  • Ollinger N (2003) The intrinisic universality problem of one-dimensional cellular automata. In: Alt H, Habib M (eds) Proceeings STACS. LNCS, vol 2607. Springer, Berlin, pp 632–641

    Google Scholar 

  • Packard NH (1988) Adaptation towards the edge of chaos. In: Dynamic patterns in complex systems. World Scientific, Singapore, pp 29–301

    Google Scholar 

  • Rogers H (1967) Theory of recursive functions and effective computability. McGraw Hill, New York

    MATH  Google Scholar 

  • Rozenberg G, Salomaa A (1997) Handbook of formal languages. Springer, Berlin

    Book  MATH  Google Scholar 

  • Shepherdson JC (1965) Machine configuration and word problems of given degree of unsolvability. Z Math Logik Grundl Math 11:149–175

    Article  MathSciNet  MATH  Google Scholar 

  • Shoenfield JR (1967) Mathematical logic. Addison Wesley, Reading

    MATH  Google Scholar 

  • Soare RI (1972) The Friedberg-Muchnik theorem re-examined. Can J Math 24:1070–1078

    Article  MathSciNet  MATH  Google Scholar 

  • Soare RI (1987) Recursively enumerable sets and degrees. Perspectives in mathematical logic. Springer, Berlin

    Book  Google Scholar 

  • Sutner K (1989) A note on Culik-Yu classes. Complex Syst 3(1):107–115

    MathSciNet  MATH  Google Scholar 

  • Sutner K (1990) Classifying circular cellular automata. Physica D 45(1–3):386–395

    Article  MathSciNet  MATH  Google Scholar 

  • Sutner K (1991) De Bruijn graphs and linear cellular automata. Complex Syst 5(1):19–30

    MathSciNet  MATH  Google Scholar 

  • Sutner K (1995) The complexity of finite cellular automata. J Comput Syst Sci 50(1):87–97

    Article  MathSciNet  MATH  Google Scholar 

  • Sutner K (2002) Cellular automata and intermediate reachability problems. Fundamentae Informaticae 52(1–3):249–256

    MathSciNet  MATH  Google Scholar 

  • Sutner K (2003a) Almost periodic configurations on linear cellular automata. Fundamentae Informaticae 58(3,4):223–240

    MathSciNet  MATH  Google Scholar 

  • Sutner K (2003b) Cellular automata and intermediate degrees. Theor Comput Sci 296:365–375

    Article  MathSciNet  MATH  Google Scholar 

  • Sutner K (2004) The complexity of reversible cellular automata. Theor Comput Sci 325(2):317–328

    Article  MathSciNet  MATH  Google Scholar 

  • Taati S (2007) Cellular automata reversible over limit set. J Cell Autom 2(2):167–177

    MathSciNet  MATH  Google Scholar 

  • Toffoli T, Margolus N (1990) Invertible cellular automata: a review. Physica D 45:229–253

    Article  MathSciNet  MATH  Google Scholar 

  • Turing AM (1936) On computable numbers, with an application to the Entscheidungsproblem. P Lond Math Soc 42:230–265

    MathSciNet  MATH  Google Scholar 

  • Vorhees B (1996) Computational analysis of one-dimensional cellular automata. World Scientific, Singapore

    Google Scholar 

  • Wang H (1993) Popular lectures on mathematical logic. Dover Publications, Dover/New York

    MATH  Google Scholar 

  • Weihrauch K (2000) Computable analysis. EATCS monographs. Springer, Berlin

    Book  Google Scholar 

  • Wolfram S (1984a) Computation theory of cellular automata. Commun Math Phys 96(1):15–57

    Article  MathSciNet  MATH  Google Scholar 

  • Wolfram S (1984b) Universality and complexity in cellular automata. Physica D 10:1–35

    Article  MathSciNet  MATH  Google Scholar 

  • Wolfram S (1985) Twenty problems in the theory of cellular automata. Phys Scr T9:170–183

    Article  MathSciNet  MATH  Google Scholar 

  • Wolfram S (2002a) The mathematica book. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Wolfram S (2002b) A new kind of science. Wolfram Media, Champaign

    MATH  Google Scholar 

  • Wuensche A (1999) Classifying cellular automata automatically. Complexity 4(3):47–66

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Sutner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Sutner, K. (2009). Classification of Cellular Automata. In: Adamatzky, A. (eds) Cellular Automata. Encyclopedia of Complexity and Systems Science Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-8700-9_50

Download citation

Publish with us

Policies and ethics