Skip to main content

Pyrolysis of Solid Biomass: Basics, Processes and Products

  • Reference work entry
  • First Online:
  • Originally published in
  • R. A. Meyers (ed.), Encyclopedia of Sustainability Science and Technology, © Springer Science+Business Media, LLC 2018

Abstract

A thorough assessment has been made of the characteristics of bio-oil from fast pyrolysis of biomass. Fast pyrolysis uniquely gives high yields of a homogenous mobile liquid for direct use for heat and power and indirect use for biofuels and green chemicals. An improved understanding of the significance of the different aspects of quality of bio-oil helps to establish standards and key quality requirements which help to define limitations for use. An appreciation of the potential for bio-oil to meet a broad spectrum of applications in renewable energy has led to a significantly increased R&D activity in studying the science and technology of fast pyrolysis with increased emphasis on quality improvement. This increased activity is evident in North America, Europe, and Asia with many new entrants as well as expansion of existing activities. The only disappointment is the continued limited industrial development and deployment of fast pyrolysis that are necessary to provide the basic bio-oil raw material for development and exploitation of applications.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Bibliography

  1. Bridgwater AV (2011) Review of fast pyrolysis of biomass and product upgrading. Biomass Bioenergy 38:1–27

    Article  Google Scholar 

  2. Czernik S, Bridgwater AV (2004) Overview of application of biomass fast pyrolysis oil. Energy Fuel 18:590–598

    Article  Google Scholar 

  3. Bridgwater AV (2011) Upgrading biomass fast pyrolysis liquids. In: Brown RC (ed) Thermochemical processing of biomass: conversion into fuels, chemicals and power. Wiley series in renewable resource. Wiley-Blackwell, Hoboken

    Google Scholar 

  4. Mohan D, Pittman CU, Steele PH (2006) Pyrolysis of wood/biomass for bio-oil: a critical review. Energy Fuel 20:848–889

    Article  Google Scholar 

  5. Kersten SRA, Wang X, Prins W, van Swaaij WPM (2005) Biomass pyrolysis in a fluidized bed reactor. Part 1: literature review and model simulations. Ind Eng Chem Res 44:8773–8785

    Article  Google Scholar 

  6. Bridgwater AV (2003) Renewable fuels and chemicals by thermal processing of biomass. Chem Eng J 91:87–102

    Article  Google Scholar 

  7. Bridgwater AV, Czernik S, Piskorz J (2002) The status of biomass fast pyrolysis. In: Bridgwater AV (ed) Fast pyrolysis of biomass a handbook, vol 2. CPL Press, Newbury, pp 1–22

    Google Scholar 

  8. Bridgwater AV (2009) Fast pyrolysis of biomass. In: Bridgwater AV, Hofbauer H, van Loo S (eds) Thermal biomass conversion. CPL Press, Newbury

    Google Scholar 

  9. Scott DS, Piskorz J, Radlein D (1985) Liquid products from the continuous flash pyrolysis of biomass. Ind Eng Chem Process Des Dev 24:581–588

    Article  Google Scholar 

  10. Scott DS, Piskorz J (1982) The flash pyrolysis of aspen poplar wood. Can J Chem Eng 60:666–674

    Article  Google Scholar 

  11. Scott DS, Legge RL, Piskorz J, Majerski P, Radlein D (1997) Fast pyrolysis of biomass for recovery of speciality chemicals. In: Bridgwater AV, Boocock DGG (eds) Developments in thermochemical biomass conversion. Blackie Academic and Professional, London, pp 523–535

    Chapter  Google Scholar 

  12. McLellan R (2000) PyNe Newsletter No. 10, December 2000. Aston University, Birmingham, p 12. ISSN:1470-3521

    Google Scholar 

  13. Gust S, Nieminen J-P (2002) Liquefied wood fuel could soon replace heavy oil!. Wood Energy (6):24–25

    Google Scholar 

  14. Fernandez Akarregi R (2010) Ikerlan-IK4 fast pyrolysis pilot plant: bio-oil and char production from biomass. PyNe newsletter 26, 8–10 June 2010. Aston University Bioenergy Research Group. PyNe website www.pyne.co.uk

  15. Lehto J, Jokela P, Solantausta Y, Oasmaa A (2010) Integrated heat, electricity and bio-oil. PyNe newsletter 26, 2–3 June 2010. Aston University Bioenergy Research Group. PyNe website www.pyne.co.uk

  16. Zhu X. Biomass fast pyrolysis for bio-oil. http://www.biomass-asia-workshop.jp/biomassws/05workshop/program/18_Zhu.pdf. See also: Chen M-Q (2006) Fast pyrolysis of biomass in a spout-fluidized bed reactor –analysis of composition and combustion characteristics of liquid product from biomass. Chinese J Process Eng 6(2):192–196

  17. Muller S (2010) Ensyn Technologies. PyNe newsletter 27, 11–12 June 2010. Aston University Bioenergy Research Group. PyNe website www.pyne.co.uk

  18. Prins W, Wagenaar BM (1997) Review of rotating cone technology for flash pyrolysis of biomass. In: Kaltschmitt MK, Bridgwater AV (eds) Biomass gasification and pyrolysis. CPL Scientific Press, Wallingford, pp 316–326

    Google Scholar 

  19. Wagenaar BM, Venderbosch RH, Carrasco J, Strenziok R, van der Aa BJ (2001) Rotating cone bio-oil production and applications. In: Bridgwater AV (ed) Progress in thermochemical biomasss conversion. Blackwell Science, Oxford, UK, pp 1268–1280

    Chapter  Google Scholar 

  20. Muggen G (2010) Empyro project summary. PyNe newsletter 27, 3–5 June 2010. Aston University Bioenergy Research Group. PyNe website www.pyne.co.uk

  21. Lédé J, Panagopoulos J, Li HZ, Villermaux J (1985) Fast pyrolysis of wood: direct measurement and study of ablation rate. Fuel 64:1514–1520

    Article  Google Scholar 

  22. Diebold JP, Power A (1988) Engineering aspects of the vortex pyrolysis reactor to produce primary pyrolysis oil vapours for use in resins and adhesives. In: Bridgwater AV, Kuester JL (eds) Research in thermochemical biomass conversion. Elsevier Applied Science, London, pp 609–628

    Chapter  Google Scholar 

  23. Peacocke GVC, Bridgwater AV (1995) Ablative plate pyrolysis of biomass for liquids. Biomass Bioenergy 7:147–154

    Article  Google Scholar 

  24. Bridgwater AV, Peacocke GVC, Robinson NM (2009) US Patent 7,625,532

    Google Scholar 

  25. Meier D (2005) New ablative pyrolyser in operation in Germany. PyNe newsletter 17, April 2005. Aston University Boenergy Research Group, pp 1–3. PyNe website www.pyne.co.uk

  26. Kovac RJ, O’Neil DJ (1989) The Georgia Tech entrained flow pyrolysis process. In: Ferrero GL, Maniatis K, Buekens A, Bridgwater AV (eds) Pyrolysis and gasification. Elsevier Applied Science, London, pp 169–179

    Google Scholar 

  27. Maniatis K, Baeyens J, Peeters H, Roggeman G (1997) The Egemin flash pyrolysis process: commissioning and results. In: Bridgwater AV, Boocock DGG (eds) Developments in thermochemical biomass conversion. Blackie Academic and Professional, London, pp 1257–1264

    Google Scholar 

  28. Yang J, Blanchette D, de Caumia B, Roy C (2001) Modelling, scale-up and demonstration of a vacuum pyrolysis reactor. In: Bridgwater AV (ed) Progress in thermochemical biomasss conversion. Blackwell Science, Oxford, UK, pp 1296–1311

    Chapter  Google Scholar 

  29. Raffelt K, Henrich E, Steinhardt J, Dinjus E (2006) Preparation and characterisation of biomass slurries: a new feed for entrained flow gasification. In: Bridgwater AV, Boocock DGB (eds) Science in thermal and chemical biomass conversion. CPL Press, Newbury

    Google Scholar 

  30. Henrich E, Dahmen N, Dinjus E (2009) Cost estimate for biosynfuel production via biosyncrude gasification. Biofuels Bioprod Biorefin 3:28–41

    Article  Google Scholar 

  31. Ingram L, Mohan D, Steele P, Strobel D, Mitchell B, Mohammad J et al (2008) Pyrolysis of wood and bark in an auger reactor: physical properties and chemical analysis of the produced bio-oils. Energy Fuel 22(1):614–625

    Article  Google Scholar 

  32. Hornung A, Apfelbacher A, Richter F, Seifert H (2007) Thermo-chemical conversion of energy crops – haloclean -intermediate pyrolysis. In: 6th International congress on valorisation and recycling of industrial waste (VARIREI, 2007), L’Aquila, 27–28 June 2007

    Google Scholar 

  33. Yang Y, Brammer JG, Mahmood ASN, Hornung A (2014) Intermediate pyrolysis of biomass energy pellets for producing sustainable liquid, gaseous and solid fuels. Bioresour Technol 169:794–799

    Article  Google Scholar 

  34. Marker T, Felix L, Linck M (2009) Integrated hydropyrolysis and hydroconversion process for production of gasoline and diesel fuel from biomass. Extended Abstract 2009 AICHE

    Google Scholar 

  35. USPTO Application #: 20090082604. Novel process for producing liquid hydrocarbon by pyrolysis of biomass in presence of hydrogen from a carbon-free energy source

    Google Scholar 

  36. Antal MJ Jr, Croiset E, Dai X, DeAlmeida C, Mok WS, Norberg N (1996) High yield biomass charcoal. Energy Fuel 10(3):652–658

    Article  Google Scholar 

  37. Diebold JP, Milne TA, Czernik S, Oasmaa A, Bridgwater AV, Cuevas A, Gust S, Huffman D, Piskorz J (1997) Proposed specifications for various grades of pyrolysis oils. In: Bridgwater AV, Boocock DGG (eds) Developments in thermochemical biomass conversion. Blackie Academic and Professional, London, pp 433–447

    Chapter  Google Scholar 

  38. Chiaramonti D, Oasmaa A, Solantausta Y (2007) Power generation using fast pyrolysis liquids from biomass. Renew Sust Energ Rev 11:1056–1086

    Article  Google Scholar 

  39. Oasmaa A, Leppämäki E, Koponen P et al (1997) Physical characterisation of biomass-based pyrolysis liquids: application of standard fuel oil analyses. VTT Publication 306. VTT Technical Research Center of Finland, Espoo, p 87

    Google Scholar 

  40. Oasmaa A, Czernik S (1999) Fuel oil quality of biomass pyrolysis oils: state-of-the-art for the end users. Energy Fuel 13(4):914–921

    Article  Google Scholar 

  41. Oasmaa A, Peacocke C (2001) A guide to physical property characterisation of biomass-derived pyrolysis liquids. VTT Technical Research Center of Finland, Espoo, p 102

    Google Scholar 

  42. Gust S, McLellan RJ, Meier D, Oasmaa A, Peacocke GVC (2003) Determination of basic fuel quality standards for biomass-derived pyrolysis liquids. In: Bridgwater AV (ed) Pyrolysis and gasification of biomass and waste. CPL Scientific Press, Newbury, 706 pp

    Google Scholar 

  43. ASTM(2009) D7544 – 09 standard specification for pyrolysis liquid biofuel. ASTM International

    Google Scholar 

  44. Oasmaa A, Elliott DC, Müller S (2009) Quality control in fast pyrolysis bio-oil production and use. Environ Prog Sustain Energy 28(3):404–409

    Article  Google Scholar 

  45. Diebold JP (2002) A review of the chemical and physical mechanisms of the storage stability of fast pyrolysis bio-oils. In: Bridgwater AV (ed) Fast pyrolysis of biomass: a handbook, vol 2. CPL Press, Newbury, pp 243–292

    Google Scholar 

  46. Czernik S, Bridgwater AV (2004) Applications of biomass fast pyrolysis oil. Energy Fuel 18:590–598

    Article  Google Scholar 

  47. Bridgwater AV (1966) Production of high-grade fuels and chemicals from catalytic pyrolysis of biomass. Catal Today 29:285–295

    Article  Google Scholar 

  48. Bridgwater AV (1994) Catalysis in thermal biomass conversion. Appl Catal A 116:5–47

    Article  Google Scholar 

  49. Chheda JN, Huber GW, Dumesic JA (2007) Review – liquid-phase catalytic processing of biomass-derived oxygenated hydrocarbons to fuels and chemicals. Angew Chem Int Ed 46(38):7164–7183

    Article  Google Scholar 

  50. Darmstadt H, Manuel G-P, Adnot A, Chaala A, Kretschmer D, Roy C (2004) Corrosion of metals by bio-oil obtained by vacuum pyrolysis of softwood bark residues. An X-ray photoelectron spectroscopy and auger electron spectroscopy study. Energy Fuel 18(5):1291–1301

    Article  Google Scholar 

  51. Nemoto I, Kouno N, Sato E, Sugiyama M (2008) Method for treating bio-oil. US Patent Application 20080178521

    Google Scholar 

  52. Diebold JP, Czernik S (1997) Additives to lower and stabilize the viscosity of pyrolysis oils during storage’. Energy Fuel 11:1081–1091

    Article  Google Scholar 

  53. Diebold JP, Czernik S, Scahill JW, Philips SD, Feik CJ (1994) Hot-gas filtration to remove char from pyrolysis vapours produced in the vortex reactor at NREL. In: Milne TA (ed) Biomass pyrolysis oil properties and combustion meeting. National Renewable Energy Laboratory, Boulder, pp 90–108

    Google Scholar 

  54. Hoekstra E, Hogendoorn KJA, Wang X, Westerhof RJM, Kersten SRA, van Swaaij WPM, Groeneveld MJ (2009) Fast pyrolysis of biomass in a fluidized bed reactor: in situ filtering of the vapors. Ind Eng Chem Res 48(10):4744–4756

    Article  Google Scholar 

  55. Sitzmann J, Bridgwater AV (2007) Upgrading fast pyrolysis oils by hot vapour filtration. In: 15th European energy from biomass conference, Berlin, 7–11 May 2007

    Google Scholar 

  56. Shihadeh AL (1998), Rural electrification from local resources: biomass pyrolysis oil combustion in a direct injection diesel engine. PhD thesis, Massachusetts Institute of Technology

    Google Scholar 

  57. Raffelt K, Henrich E, Koegel A, Stahl R, Steinhardt J, Weirich F (2006) The BTL2 process of biomass utilization entrained-flow gasification of pyrolyzed biomass slurries. Appl Biochem Biotechnol 129(1–3):153–164

    Article  Google Scholar 

  58. Henrich E, DahmenN, Raffelt K, Stahl R, Weirich F(2007) The Karlsruhe “bioliq” process for biomass gasification. Summer School, University of Warsaw, 29–31 August 2007

    Google Scholar 

  59. Volkmann D (2004) Update on technology and projects (at future energy). In: Gasification technologies conference, Washington, DC, Oct 2004

    Google Scholar 

  60. Green Car Congress (2007) Dynamotive introduces higher energy content biooil. http://www.greencarcongress.com/2007/01/dynamotive_intr.html. Accessed 20 Nov 2010

  61. Dynamotive (2009) Dynamotive bio-oil information booklet. http://www.dynamotive.com/assets/resources/PIB-BioOil.pdf. Accessed 20 Nov 2010

  62. Salter EH (1999) Catalytic pyrolysis of biomass for improved liquid fuel quality. PhD thesis, Aston University

    Google Scholar 

  63. Smith PW (2005) CCE-multicontactor technology- a new process intensification tool with major applications in the cleaning of biomass with energy recovery. World Congress of Chemical Engineering, Glasgow

    Google Scholar 

  64. Leech J (1997) Running a dual fuel engine on pyrolysis oil. In: Kaltschmitt M, Bridgwater AV (eds) Biomass gasification and pyrolysis, state of the art and future prospects. CPL Press, Newbury, pp 495–497

    Google Scholar 

  65. Ormrod D, Webster A (2000) Progress in utilization of bio-oil in diesel engines. PyNe Newsletter, 10. Aston University, Birmingham, p 15

    Google Scholar 

  66. Oasmaa A, Kytö M, Sipilä K (2001) Pyrolysis oil combustion tests in an industrial boiler. In: Bridgwater AV (ed) Progress in thermochemical biomass conversion. Blackwell Science, Oxford, UK, pp 1468–1481

    Chapter  Google Scholar 

  67. Alcala A, Bridgwater AV (2013) Upgrading fast pyrolysis liquids: blends of bio-oil and biodiesel. Fuel 109:417–426

    Article  Google Scholar 

  68. Weerachanchai P, Tangsathitkulchai C, Tangsathitkulchai M (2009) Phase behaviors and fuel properties of bio-oil-diesel-alcohol blends. World Acad Sci Eng Technol 56:387–393

    Google Scholar 

  69. Ikura M, Slamak M, Sawatzky H (1998) Pyrolysis liquid-in-diesel oil microemulsions. US Patent 5,820,640

    Google Scholar 

  70. Baglioni P, Chiaramonti D, Bonini M, Soldaini I, Tondi G (2001) BCO/diesel oil emulsification: main achievements of the emulsification process and preliminary results of tests on diesel engine. In: Bridgwater AV (ed) Progress in thermochemical biomass conversion. Blackwell Science, Oxford, UK, pp 1525–1539

    Chapter  Google Scholar 

  71. Baglioni P, Chiaramonti D, Gartner K, Grimm HP, Soldaini I, Tondi G, Bridgwater AV, Webster A (2003) Development of bio crude oil/diesel oil emulsions and use in diesel engines – part 1: emulsion production. Biomass Bioenergy 25:85–99; Development of bio crude oil/diesel oil emulsions and use in diesel engines – part 2: tests in diesel engines. Biomass Bioenergy 25:101–111

    Google Scholar 

  72. Strenziok R, Hansen U, Künster H (2001) Combustion of bio-oil in a gas turbine. In: Bridgwater AV (ed) Progress in thermochemical biomass conversion. Blackwell Science, Oxford, UK. ISBN:0-632-055533-21

    Google Scholar 

  73. Boerrigter H, Kiel J, Bergman P (2006) Biomass pre-treatment by torrefaction. In: Third ThermalNet meeting, Lille, 3–5 Apr 2006

    Google Scholar 

  74. Zanzi R, Tito Ferro D, Torres A, Beaton Soler P, Björnbom E (2005) Biomass torrefaction. In: 14th European biomass conference & exhibition, Paris, 17–21 Oct 2005

    Google Scholar 

  75. Prins MJ, Ptasinski KJ, Janssen FJJG (2006) Torrefaction of wood: part 1. Weight loss kinetics. J Anal Appl Pyrolysis 77(1):28–34; Idem, Torrefaction of wood: part 2. Analysis of products. J Anal Appl Pyrolysis 77(1):35–40

    Google Scholar 

  76. Fratini E, Bonini M, Oasmaa A, Solantausta Y, Teixeira J, Baglioni P (2006) SANS analysis of the microstructural evolution during the aging of pyrolysis oils from biomass. Langmuir 22(1):306–312

    Article  Google Scholar 

  77. Peacocke GVC (2002) Transport handling and storage of fast pyrolysis liquids. In: Fast pyrolysis of biomass: a handbook, vol 2. CPL Press, Newbury, pp 293–338

    Google Scholar 

  78. Blin J, Volle G, Girard P, Bridgwater AV, Meier D (2007) Biodegradability of biomass pyrolysis oils: comparison to conventional petroleum fuels and alternatives fuels in current use. Fuel 86:2679–2686

    Article  Google Scholar 

  79. Oasmaa A, Leppämäki E, Koponen P, Levander J, Tapola E (1997) Physical characterisation of biomass-based pyrolysis liquids: application of standard fuel oil analyses. VTT Publications 306, Espoo

    Google Scholar 

  80. Maggi R, Elliott D (1997) Upgrading overview. In: Bridgwater AV, Boocock DGG (eds) Developments in thermochemical biomass conversion. Blackie Academic and Professional, London, pp 575–588

    Chapter  Google Scholar 

  81. Zhang Q, Chang J, Wang T, Xu Y (2007) Review of biomass pyrolysis oil properties and upgrading research. Energy Convers Manag 48:87–92

    Article  Google Scholar 

  82. Huber GW, Corma A (2007) Synergies between bio- and oil refineries for the production of fuels from biomass. Angew Chem Int Ed 46(38):7184–7201

    Article  Google Scholar 

  83. Elliott DC, Baker EG (1987) Hydrotreating biomass liquids to produce hydrocarbon fuels. In: Klass D (ed) Energy from biomass and wastes X. Institute of Gas Technology, Chicago, pp 765–784

    Google Scholar 

  84. Baker EG, Elliott DC (1988) Catalytic upgrading of biomass pyrolysis oils. In: Bridgwater AV, Kuester JL (eds) Research in thermochemical biomass conversion, Phoenix, Arizona, USA. Elsevier Applied Science, London, pp 883–895

    Chapter  Google Scholar 

  85. Baker EG, Elliott DC (1988) Catalytic hydrotreating of biomass-derived oils. In: Soltes J, Milne TA (eds) Pyrolysis oils from biomass – producing, analyzing and upgrading. ACS symposium series, vol 376. American Chemical Society, Washington, DC, pp 228–240

    Chapter  Google Scholar 

  86. Elliott DC, Neuenschwander GN (1997) Liquid fuels by low-severity hydrotreating of biocrude. In: Bridgwater AV, Boocock DGB (eds) Developments in thermochemical biomass conversion. Blackie Academic and Professional, London, pp 611–621

    Chapter  Google Scholar 

  87. Maggi R, Delmon B (1994) Characterisation of bio-oils produced by pyrolysis. In: Bridgwater AV (ed) Advances in thermochemical biomass conversion, vol 2. Blackie Academic and Professional, London, pp 1086–1094

    Google Scholar 

  88. Grange P, Laurent E, Maggi R, Centeno A, Delmon B (1996) Hydrotreatment of pyrolysis oils from biomass – reactivity of the various categories of oxygenated compounds and preliminary technoeconomic study. Catal Today 29(1–4):297–301

    Article  Google Scholar 

  89. Jones SB, Holladay JE, Valkenburg C, Stevens DJ, Walton CW, Kinchin C, Elliott DC, Czernik S (2009) Production of gasoline and diesel from biomass via fast pyrolysis, hydrotreating and hydrocracking: a design case. Pacific Northwest National Laboratory, Richland, PNNL-18284

    Google Scholar 

  90. Eijsbouts S, Mayo SW, Fujita K (2007) Unsupported transition metal sulfide catalysts: from fundamentals to industrial application. Appl Catal A Gen 322:58–66

    Article  Google Scholar 

  91. UOP (2008) Proven pyrolysis oil technology for high quality fuels with a reduced carbon footprint. www.uop.com/renewables/UOP_Ensyn_Final.pdf. Accessed 2 Dec 2010

  92. Elliott DC, Hart TR (2009) Catalytic hydroprocessing of chemical models for bio-oil. Energy Fuel 23(2):631–637. https://doi.org/10.1021/ef8007773

    Article  Google Scholar 

  93. Wildschut J, Arentz J, Rasrendra CB, Venderbosch RH, Heeres HJ, Catalytic hydrotreatment of fast pyrolysis oil: model studies on reaction pathways for the carbohydrate fraction. Environ Prog Sustain Energy, 2009 28(3):450–460,

    Google Scholar 

  94. Wildschut J, Heeres HJ (2008) Experimental studies on the upgrading of fast pyrolysis oil to liquid transportation fuels. In: Proceedings of the 235th ACS meeting, New Orleans, 6–10 Apr 2008

    Google Scholar 

  95. Ardiyanti AR, Venderbosch RH, Heeres HJ (2009) Process-product studies on pyrolysis oil upgrading by hydrotreatment with Ru/C catalysts. University of Groningen

    Google Scholar 

  96. Zhao C, Kou Y, Lemonidou AA, Li X, Lercher JA (2009) Highly selective catalytic conversion of phenolic bio-oil to alkanes. Angew Chem Int Ed 48(22):3987–3990

    Article  Google Scholar 

  97. Tang Z, Lu Q, Zhang Y, Zhu X, Guo Q (2009) One step bio-oil upgrading through hydrotreatment, esterification, and cracking. Ind Eng Chem Res 48(15):6923–6929

    Article  Google Scholar 

  98. Cottam M-L, Bridgwater AV (1994) Techno-economic modelling of biomass flash pyrolysis and upgrading systems. Biomass Bioenergy 7:267–273

    Article  Google Scholar 

  99. Chang C, Silvestri (1977) The conversion of methanol and other O-compounds to hydrocarbons over zeolite catalysts. J Catal 47:249–259

    Article  Google Scholar 

  100. Diebold JP, Beckman D, Bridgwater AV, Elliott DC, Solantausta Y (1994) IEA techno-economic analysis of the thermochemical conversion of biomass to gasoline by the NREL process. In: Bridgwater AV (ed) Advances in thermochemical biomass conversion. Blackie Academic and Professional, London, pp 1325–1342

    Google Scholar 

  101. Williams PT, Horne PA (1994) Characterisation of oils from the fluidised bed pyrolysis of biomass with zeolite catalyst upgrading. Biomass Bioenergy 7:223–226

    Article  Google Scholar 

  102. Bridgwater AV, Cottam M-L (1992) Opportunities for biomass pyrolysis liquids production and upgrading. Energy Fuel 6(2):113–120

    Article  Google Scholar 

  103. Hydrocarbon Publishing. Future roles of FCC and hydroprocessing units in modern refineries fluid catalytic cracking. http://www.hydrocarbonpublishing.com/ReportP/fcc.php

  104. Huber GW, Bale B (July 2009) Grassoline at the pump. Sci Am 301:52–59

    Article  Google Scholar 

  105. KIOR (undated) Welcome to KIOR.com. http://www.kior.com/.Accessed 2 Dec 2010

  106. Jonietz E (2007) Oil from wood. www.technologyreview.com/Energy/19694/page2/. Accessed 2 Dec 2010

  107. O’Connor P, van der Meij (2007) Biomass conversion: a sustainable path to clean renewable energy fuels and chemicals, Vienna. http://www.kior.com. Accessed 21 Jan 2011

  108. Valle B, Gayubo AG, Atutxa A, Alonso A, Bilbao J (2007) Integration of thermal treatment and catalytic transformation for upgrading biomass pyrolysis oil. Int J Chem React Eng 5:A86

    Google Scholar 

  109. Cortright RD, Davda RR, Dumesic JA (2002) Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water. Nature 418:964–967

    Article  Google Scholar 

  110. Huber GW, Dumesic JA (2006) An overview of aqueous-phase catalytic processes for production of hydrogen and alkanes in a biorefinery. Catal Today 111:119–132

    Article  Google Scholar 

  111. Fisk C, Crofcheck C, Crocker M, Andrews R, Storey J, Lewis S Sr.(2006) Novel approaches to catalytic upgrading of bio-oil. In: American Society of Agricultural and Biological Engineers, Paper number 066035, 2006 ASAE annual meeting

    Google Scholar 

  112. Nokkosmaki MI, Kuoppala ET, Leppamaki EA, AOI K (2000) Catalytic conversion of biomass pyrolysis vapours with zinc oxide. J Anal Appl Pyrolysis 55:119–131

    Article  Google Scholar 

  113. Wang D, Czernik S, Montane D, Mann M, Chornet E (1997) Biomass to hydrogen via fast pyrolysis and catalytic steam reforming of the pyrolysis oil or its fractions. Ind Eng Chem Res 36:1507–1518

    Article  Google Scholar 

  114. Czernik S, French R, Feik C, Chornet E (2002) Hydrogen by catalytic steam reforming of liquid byproducts from biomass thermoconversion processes. Ind Eng Chem Res 41:4209–4215

    Article  Google Scholar 

  115. Mann MK, Spath PL, Kadam K (1996) Technical and economic analysis of renewables-based hydrogen production. In: Proceedings of the 11th world hydrogen energy conference, Stuttgart, 23–28 June 1996

    Google Scholar 

  116. Radlein D (1999) The production of chemicals from fast pyrolysis bio-oils. In: Bridgwater AV et al (eds) Fast pyrolysis of biomass: a handbook. CPL Press, Newbury, pp 164–188

    Google Scholar 

  117. Amen-Chen C, Pakdel H, Roy C, Production of monomeric phenols by thermochemical conversion of biomass – a review. In: Bioresour Technol, 2001, vol. 79, pp. 277–299.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony V. Bridgwater .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Bridgwater, A.V. (2019). Pyrolysis of Solid Biomass: Basics, Processes and Products. In: Kaltschmitt, M. (eds) Energy from Organic Materials (Biomass). Encyclopedia of Sustainability Science and Technology Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-7813-7_984

Download citation

Publish with us

Policies and ethics