Skip to main content

Ionomer Thin Films in PEM Fuel Cells

  • Reference work entry
  • First Online:
Fuel Cells and Hydrogen Production
  • 4574 Accesses

  • Originally published in
  • R. A. Meyers (ed.), Encyclopedia of Sustainability Science and Technology, © Springer Science+Business Media LLC 2018

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 949.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

Primary Literature

  1. Weber AZ, Kusoglu A (2014) Unexplained transport resistances for low-loaded fuel-cell catalyst layers. J Mater Chem A 2(41):17207–17211

    Article  Google Scholar 

  2. Holdcroft S (2014) Fuel cell catalyst layers: a polymer science perspective. Chem Mater 26(1):381–393

    Article  Google Scholar 

  3. Soboleva T, Malek K, Xie Z, Navessin T, Holdcroft S (2011) PEMFC catalyst layers: the role of micropores and mesopores on water sorption and fuel cell activity. ACS Appl Mater Interfaces 3(6):1827–1837

    Article  Google Scholar 

  4. Lopez-Haro M et al (2014) Three-dimensional analysis of Nafion layers in fuel cell electrodes. Nat Commun 5:5229. doi:10.1038/ncomms6229

    Google Scholar 

  5. Siroma Z, Ioroi T, Fujiwara N, Yasuda K (2002) Proton conductivity along interface in thin cast film of Nafion (R). Electrochem Commun 4(2):143–145

    Article  Google Scholar 

  6. Iden H, Ohma A, Shinohara K (2009) Analysis of proton transport in pseudo catalyst layers. J Electrochem Soc 156(9):B1078–B1084

    Article  Google Scholar 

  7. Kongkanand A, Mathias MF (2016) The priority and challenge of high-power performance of low-platinum proton-exchange membrane fuel cells. J Phys Chem Lett 7(7):1127–1137

    Article  Google Scholar 

  8. Kudo K, Jinnouchi R, Morimoto Y (2016) Humidity and temperature dependences of oxygen transport resistance of Nafion thin film on platinum electrode. Electrochim Acta 209:682–690

    Article  Google Scholar 

  9. Iden H, Sato K, Ohma A, Shinohara K (2011) Relationship among microstructure, ionomer property and proton transport in pseudo catalyst layers. J Electrochem Soc 158(8):B987–B994

    Article  Google Scholar 

  10. Ohma A et al (2011) Analysis of proton exchange membrane fuel cell catalyst layers for reduction of platinum loading at Nissan. Electrochim Acta 56(28):10832–10841

    Article  Google Scholar 

  11. Mashio T, Iden H, Ohma A, Tokumasu T (2017) Modeling of local gas transport in catalyst layers of PEM fuel cells. J Electroanal Chem 790:27–39

    Article  Google Scholar 

  12. Shinozaki K, Morimoto Y, Pivovar BS, Kocha SS (2016) Suppression of oxygen reduction reaction activity on Pt-based electrocatalysts from ionomer incorporation. J Power Sources 325:745–751

    Article  Google Scholar 

  13. Suzuki T, Kudo K, Morimoto Y (2013) Model for investigation of oxygen transport limitation in a polymer electrolyte fuel cell. J Power Sources 222:379–389

    Article  Google Scholar 

  14. Jomori S, Komatsubara K, Nonoyama N, Kato M, Yoshida T (2013) An experimental study of the effects of operational history on activity changes in a PEMFC. J Electrochem Soc 160(9):F1067–F1073

    Article  Google Scholar 

  15. Ono Y, Ohma A, Shinohara K, Fushinobu K (2013) Influence of equivalent weight of ionomer on local oxygen transport resistance in cathode catalyst layers. J Electrochem Soc 160(8):F779–F787

    Article  Google Scholar 

  16. Morawietz T, Handl M, Oldani C, Friedrich KA, Hiesgen R (2016) Quantitative in situ analysis of ionomer structure in fuel cell catalytic layers. ACS Appl Mater Interfaces 8(40):27044–27054

    Article  Google Scholar 

  17. Soboleva T et al (2010) On the micro-, meso- and macroporous structures of polymer electrolyte membrane fuel cell catalyst layers. ACS Appl Mater Interfaces 2(2):375–384

    Article  Google Scholar 

  18. Kusoglu A, Kwong A, Clark KT, Gunterman HP, Weber AZ (2012) Water uptake of fuel-cell catalyst layers. J Electrochem Soc 159(9):F530–F535

    Article  Google Scholar 

  19. Iden H, Ohma A (2013) An in situ technique for analyzing ionomer coverage in catalyst layers. J Electroanal Chem 693:34–41

    Article  Google Scholar 

  20. Kusoglu A et al (2014) Impact of substrate and processing on confinement of Nafion thin films. Adv Funct Mater 24(30):4763–4774

    Article  Google Scholar 

  21. Kim TH, Yi JY, Jung CY, Jeong E, Yi SC (2017) Solvent effect on the Nafion agglomerate morphology in the catalyst layer of the proton exchange membrane fuel cells. Int J Hydrog Energy 42(1):478–485

    Article  Google Scholar 

  22. Kim YS et al (2015) Origin of toughness in dispersion-cast Nafion membranes. Macromolecules 48(7):2161–2172

    Article  Google Scholar 

  23. Welch C et al (2012) Nafion in dilute solvent systems: dispersion or solution? ACS Macro Lett 1(12):1403–1407

    Article  MathSciNet  Google Scholar 

  24. Kusoglu A, Dursch TJ, Weber AZ (2016) Nanostructure/swelling relationships of bulk and thin-film PFSA ionomers. Adv Funct Mater 26(27):4961–4975

    Article  Google Scholar 

  25. Kim S et al (2013) Surface-induced nanostructure and water transport of thin proton-conducting polymer films. Macromolecules 46(14):5630–5637

    Article  Google Scholar 

  26. Page KA et al (2015) In situ method for measuring the mechanical properties of Nafion thin films during hydration cycles. ACS Appl Mater Interfaces 7(32):17874–17883

    Article  Google Scholar 

  27. Eastman SA et al (2012) Effect of confinement on structure, water solubility, and water transport in Nafion thin films. Macromolecules 45(19):7920–7930

    Article  Google Scholar 

  28. Dura JA, Murthi VS, Hartman M, Satija SK, Majkrzak CF (2009) Multilamellar interface structures in Nafion. Macromolecules 42(13):4769–4774

    Article  Google Scholar 

  29. Wood DL, Chlistunoff J, Majewski J, Borup RL (2009) Nafion structural phenomena at platinum and carbon interfaces. J Am Chem Soc 131(50):18096–18104

    Article  Google Scholar 

  30. Masuda T, Sonsudin F, Singh PR, Naohara H, Uosaki K (2013) Potential-dependent adsorption and desorption of perfluorosulfonated ionomer on a platinum electrode surface probed by electrochemical quartz crystal microbalance and atomic force microscopy. J Phys Chem C 117(30):15704–15709

    Article  Google Scholar 

  31. Paul DK, Fraser A, Karan K (2011) Understanding the ionomer structure and the proton conduction mechanism in PEFC catalyst layer: adsorbed Nafion on model substrate. ECS Trans 41(1):1393–1406

    Article  Google Scholar 

  32. Kongkanand A (2011) Interfacial water transport measurements in Nafion thin films using a quartz-crystal microbalance. J Phys Chem C 115(22):11318–11325

    Article  Google Scholar 

  33. Dishari SK, Hickner MA (2012) Antiplasticization and water uptake of Nafion thin films. ACS Macro Lett 1(2):291–295

    Article  Google Scholar 

  34. Ono Y, Nagao Y (2016) Interfacial structure and proton conductivity of Nafion at the Pt-deposited surface. Langmuir 32(1):352–358

    Article  Google Scholar 

  35. Paul DK, McCreery R, Karan K (2014) Proton transport property in supported Nafion Nanothin films by electrochemical impedance spectroscopy. J Electrochem Soc 161(14):F1395–F1402

    Article  Google Scholar 

  36. Paul DK, Fraser A, Karan K (2011) Towards the understanding of proton conduction mechanism in PEMFC catalyst layer: conductivity of adsorbed Nafion films. Electrochem Commun 13(8):774–777

    Article  Google Scholar 

  37. Siroma Z et al (2009) Depression of proton conductivity in recast Nafion (R) film measured on flat substrate. J Power Sources 189(2):994–998

    Article  Google Scholar 

  38. Page KA et al (2014) Confinement-driven increase in ionomer thin-film modulus. Nano Lett 14(5):2299–2304

    Article  Google Scholar 

  39. Kudo K, Morimoto Y (2013) Analysis of oxygen transport resistance of Nafion thin film on Pt electrode. ECS Trans 50(2):1487–1494

    Article  Google Scholar 

  40. Zimudzi TJ, Hickner MA (2016) Signal enhanced FTIR analysis of alignment in NAFION thin films at SiO2 and au interfaces. ACS Macro Lett 5(1):83–87

    Article  Google Scholar 

  41. Hanawa H, Kunimatsu K, Watanabe M, Uchida H (2012) In situ ATR-FTIR analysis of the structure of Nafion-Pt/C and Nafion-Pt3Co/C interfaces in fuel cell. J Phys Chem C 116(40):21401–21406

    Article  Google Scholar 

  42. Kunimatsu K, Yoda T, Tryk DA, Uchida H, Watanabe M (2010) In situ ATR-FTIR study of oxygen reduction at the Pt/Nafion interface. Phys Chem Chem Phys 12(3):621–629

    Article  Google Scholar 

  43. Kendrick I, Kumari D, Yakaboski A, Dimakis N, Smotkin ES (2010) Elucidating the ionomer-electrified metal interface. J Am Chem Soc 132(49):17611–17616

    Article  Google Scholar 

  44. Ayato Y, Kunimatsu K, Osawa M, Okada T (2006) Study of Pt electrode/Nafion ionomer interface in HClO4 by in situ surface-enhanced FTIR spectroscopy. J Electrochem Soc 153(2):A203–A209

    Article  Google Scholar 

  45. Mohamed HF et al (2013) Possible presence of hydrophilic SO3H nanoclusters on the surface of dry ultrathin Nafion(R) films: a positron annihilation study. Phys Chem Chem Phys 15(5):1518–1525

    Article  Google Scholar 

  46. Paul DK, Giorgi JB, Karan K (2013) Chemical and ionic conductivity degradation of ultra-thin ionomer film by X-ray beam exposure. J Electrochem Soc 160(4):F464–F469

    Article  Google Scholar 

  47. Albert JNL, Epps Iii TH (2010) Self-assembly of block copolymer thin films. Mater Today 13(6):24–33

    Article  Google Scholar 

  48. Segalman RA (2005) Patterning with block copolymer thin films. Mater Sci Eng R 48(6):191–226

    Article  Google Scholar 

  49. Fasolka MJ, Mayes AM (2001) BLOCK COPOLYMER THIN FILMS: physics and Applications1. Annu Rev Mater Res 31(1):323–355

    Article  Google Scholar 

  50. Russell TP, Lambooy P, Kellogg GJ, Mayes AM (1995) Diblock copolymers under confinement. Physica B 213(0):22–25

    Article  Google Scholar 

  51. Huang E et al (1998) Using surface active random copolymers to control the domain orientation in diblock copolymer thin films. Macromolecules 31(22):7641–7650

    Article  Google Scholar 

  52. Mansky P, Russell TP, Hawker CJ, Pitsikalis M, Mays J (1997) Ordered Diblock copolymer films on random copolymer brushes. Macromolecules 30(22):6810–6813

    Article  Google Scholar 

  53. Modestino MA et al (2013) Self-assembly and transport limitations in confined Nafion films. Macromolecules 46(3):867–873

    Article  Google Scholar 

  54. Bertoncello P, Ciani I, Li F, Unwin PR (2006) Measurement of apparent diffusion coefficients within ultrathin Nafion Langmuir-Schaefer films: comparison of a novel scanning electrochemical microscopy approach with cyclic voltammetry. Langmuir 22(25):10380–10388

    Article  Google Scholar 

  55. Dishari SK, Hickner MA (2013) Confinement and proton transfer in NAFION thin films. Macromolecules 46(2):413–421

    Article  Google Scholar 

  56. Ohira A, Kuroda S, Mohamed HFM, Tavernier B (2013) Effect of interface on surface morphology and proton conduction of polymer electrolyte thin films. Phys Chem Chem Phys 15(27):11494–11500

    Article  Google Scholar 

  57. Modestino MA, Kusoglu A, Hexemer A, Weber AZ, Segalman RA (2012) Controlling Nafion structure and properties via wetting interactions. Macromolecules 45(11):4681–4688

    Article  Google Scholar 

  58. Noguchi H, Taneda K, Minowa H, Naohara H, Uosaki K (2010) Humidity-dependent structure of surface water on Perfluorosulfonated ionomer thin film studied by sum frequency generation spectroscopy. J Phys Chem C 114(9):3958–3961

    Article  Google Scholar 

  59. Novitski D, Xie Z, Holdcroft S (2015) Time-dependent mass transport for O-2 reduction at the Pt | Perfluorosulfonic acid ionomer Interface. ECS Electrochem Lett 4(1):F9–F12

    Article  Google Scholar 

  60. Tang J, Yuan W, Zhang J, Li H, Zhang Y (2013) Evidence for a crystallite-rich skin on perfluorosulfonate ionomer membranes. RSC Adv 3(23):8947–8952

    Article  Google Scholar 

  61. He Q et al (2011) Correlating humidity-dependent ionically conductive surface area with transport phenomena in proton-exchange membranes. J Phys Chem B 115(40):11650–11657

    Article  Google Scholar 

  62. Bass M, Berman A, Singh A, Konovalov O, Freger V (2011) Surface-induced micelle orientation in Nafion films. Macromolecules 44(8):2893–2899

    Article  Google Scholar 

  63. Koestner R, Roiter Y, Kozhinova I, Minko S (2011) AFM imaging of adsorbed Nafion polymer on mica and Graphite at molecular level. Langmuir 27(16):10157–10166

    Article  Google Scholar 

  64. Paul DK, Karan K (2014) Conductivity and wettability changes of ultrathin Nafion films subjected to thermal annealing and liquid water exposure. J Phys Chem C 118(4):1828–1835

    Article  Google Scholar 

  65. Ogata Y, Kawaguchi D, Yamada NL, Tanaka K (2013) Multistep thickening of Nafion thin films in water. ACS Macro Lett 2(10):856–859

    Article  Google Scholar 

  66. Abuin GC, Cecilia Fuertes M, Corti HR (2013) Substrate effect on the swelling and water sorption of Nafion nanomembranes. J Membr Sci 428(0):507–515

    Article  Google Scholar 

  67. Paul DK, Karan K, Docoslis A, Giorgi JB, Pearce J (2013) Characteristics of self-assembled ultrathin Nafion films. Macromolecules 46(9):3461–3475

    Article  Google Scholar 

  68. Davis EM, Stafford CM, Page KA (2014) Elucidating water transport mechanisms in Nafion thin films. ACS Macro Lett 3(10):1029–1035

    Article  Google Scholar 

  69. Shim HK, Paul DK, Karan K (2015) Resolving the contradiction between anomalously high water uptake and low conductivity of nanothin Nafion films on SiO2 substrate. Macromolecules 48(22):8394–8397

    Article  Google Scholar 

  70. Paul DK, Shim HK, Giorgi JB, Karan K (2016) Thickness dependence of thermally induced changes in surface and bulk properties of Nafion (R) nanofilms. J Polym Sci Part B Polym Phys 54(13):1267–1277

    Article  Google Scholar 

  71. Bertoncello P, Wilson NR, Unwin PR (2007) One-step formation of ultra-thin chemically functionalized redox-active Langmuir-Schaefer Nafion films. Soft Matter 3(10):1300–1307

    Article  Google Scholar 

  72. Krtil P, Trojanek A, Samec Z (2001) Kinetics of water sorption in Nafion thin films – quartz crystal microbalance study. J Phys Chem B 105(33):7979–7983

    Article  Google Scholar 

  73. Nadermann NK, Davis EM, Page KA, Stafford CM, Chan EP (2015) Using indentation to quantify transport properties of nanophase-segregated polymer thin films. Adv Mater 27(33) 4924–4930.

    Article  Google Scholar 

  74. Springer TE, Zawodzinski TA, Gottesfeld S (1991) Polymer Electrolyte Fuel-Cell Model. J Electrochem Soc 138(8):2334–2342

    Article  Google Scholar 

  75. Kusoglu A, Weber AZ (2017) New insights into perfluorinated sulfonic-acid ionomers. Chem Rev 117(3):987–1104

    Article  Google Scholar 

  76. Pantelić N, Wansapura CM, Heineman WR, Seliskar CJ (2005) Dynamic in situ spectroscopic ellipsometry of the reaction of aqueous iron(II) with 2,2′-bipyridine in a thin Nafion film. J Phys Chem B 109(29):13971–13979

    Article  Google Scholar 

  77. Bai YJ, Schaberg MS, Hamrock SJ, Tang ZJ, Goenaga G, Papandrew AB and Zawodzinski TA (2017) Density Measurements and Partial Molar Volume Analysis of Different Membranes for Polymer Electrolyte Membrane Fuel Cells. Electrochim Acta 242:307–314

    Article  Google Scholar 

  78. Freger V (2009) Hydration of ionomers and Schroeder’s paradox in Nafion. J Phys Chem B 113(1):24–36

    Article  Google Scholar 

  79. Kreuer KD (2013) The role of internal pressure for the hydration and transport properties of ionomers and polyelectrolytes. Solid State Ionics 252(0):93–101

    Article  Google Scholar 

  80. Kusoglu A, Savagatrup S, Clark KT, Weber AZ (2012) Role of mechanical factors in controlling the structure–function relationship of PFSA ionomers. Macromolecules 45(18):7467–7476

    Article  Google Scholar 

  81. Kollath VO, Karan K (2016) New molecular scale insights into the alpha-transition of Nafion (R) thin films from variable temperature ATR-FTIR spectroscopy. Phys Chem Chem Phys 18(37):26144–26150

    Article  Google Scholar 

  82. Singhal N, Datta A (2016) Thickness dependence of acidity and microstructure in Nafion films. Chemistryselect 1(10):2277–2283

    Article  Google Scholar 

  83. Allen FI et al (2015) Morphology of hydrated as-cast Nafion revealed through Cryo electron tomography. ACS Macro Lett 4(1):1–5

    Article  Google Scholar 

  84. Umemura K et al (2006) Nanocharacterization and nanofabrication of a Nafion thin film in liquids by atomic force microscopy. Langmuir 22(7):3306–3312

    Article  Google Scholar 

  85. Hill TA, Carroll DL, Czerw R, Martin CW, Perahia D (2003) Atomic force microscopy studies on the dewetting of perfluorinated ionomer thin films. J Polym Sci Part B Polym Phys 41(2):149–158

    Article  Google Scholar 

  86. Maeda Y et al (2008) Study of the nanoscopic deformation of an annealed Nafion film by using atomic force microscopy and a patterned substrate. Ultramicroscopy 108(6):529–535

    Article  Google Scholar 

  87. De Almeida NE, Paul DK, Karan K, Goward GR (2015) 1H solid-state NMR study of Nanothin Nafion films. J Phys Chem C 119(3):1280–1285

    Article  Google Scholar 

  88. Kalisvaart WP, Fritzsche H, Merida W (2015) Water uptake and swelling hysteresis in a Nafion thin film measured with neutron reflectometry. Langmuir 31(19):5416–5422

    Article  Google Scholar 

  89. DeCaluwe SC, Kienzle PA, Bhargava P, Baker AM, Dura JA (2014) Phase segregation of sulfonate groups in Nafion interface lamellae, quantified via neutron reflectometry fitting techniques for multi-layered structures. Soft Matter 10(31):5763–5776

    Article  Google Scholar 

  90. Hexemer A, Müller-Buschbaum P (2015) Advanced grazing-incidence techniques for modern soft-matter materials analysis. IUCrJ 2(Pt 1):106–125

    Article  Google Scholar 

  91. Nagao Y (2017) Proton-conductivity enhancement in polymer thin films. Langmuir 33(44):12547–12558

    Article  Google Scholar 

  92. Peron J et al (2011) Fuel cell catalyst layers containing short-side-chain perfluorosulfonic acid ionomers. J Power Sources 196(1):179–181

    Article  Google Scholar 

  93. Dorenbos G, Pomogaev VA, Takigawa M, Morohoshi K (2010) Prediction of anisotropic transport in Nafion containing catalyst layers. Electrochem Commun 12(1):125–128

    Article  Google Scholar 

  94. Hwang GS, Parkinson DY, Kusoglu A, MacDowell AA, Weber AZ (2013) Understanding water uptake and transport in Nafion using X-ray microtomography. ACS Macro Lett 2(4):288–291

    Article  Google Scholar 

  95. Novitski D, Holdcroft S (2015) Determination of O-2 mass transport at the Pt I PFSA ionomer interface under reduced relative humidity. ACS Appl Mater Interfaces 7(49):27314–27323

    Article  Google Scholar 

  96. Uribe FA, Springer TE, Gottesfeld S (1992) A microelectrode study of oxygen reduction at the platinum/recast-Nafion film Interface. J Electrochem Soc 139(3):765–773

    Article  Google Scholar 

  97. Sambandam S, Parrondo J, Ramani V (2013) Estimation of electrode ionomer oxygen permeability and ionomer-phase oxygen transport resistance in polymer electrolyte fuel cells. Phys Chem Chem Phys: PCCP 15(36):14994–15002

    Article  Google Scholar 

  98. Zhang L, Ma CS, Mukerjee S (2004) Oxygen reduction and transport characteristics at a platinum and alternative proton conducting membrane interface. J Electroanal Chem 568(1–2):273–291

    Article  Google Scholar 

  99. Nouri-Khorasani A et al (2016) Molecular modeling of the proton density distribution in a water-filled slab-like nanopore bounded by Pt oxide and ionomer. Catal Today 262:133–140

    Article  Google Scholar 

  100. Garrick TR, Moylan TE, Yarlagadda V, Kongkanand A (2017) Characterizing electrolyte and platinum Interface in PEM fuel cells using CO displacement. J Electrochem Soc 164(2):F60–F64

    Article  Google Scholar 

  101. Subbaraman R, Strmcnik D, Stamenkovic V, Markovic NM (2010) Three phase interfaces at electrified metal-solid electrolyte systems 1. Study of the Pt(hkl)-Nafion Interface. J Phys Chem C 114(18):8414–8422

    Article  Google Scholar 

  102. Andersen SM et al (2014) Adsorption behavior of perfluorinated sulfonic acid ionomer on highly graphitized carbon nanofibers and their thermal stabilities. J Phys Chem C 118(20):10814–10823

    Article  Google Scholar 

  103. Masuda T, Naohara H, Takakusagi S, Singh PR, Uosaki K (2009) Formation and structure of perfluorosulfonated ionomer thin film on a graphite surface. Chem Lett 38(9):884–885

    Article  Google Scholar 

  104. Damasceno Borges D, Gebel G, Franco AA, Malek K, Mossa S (2015) Morphology of supported polymer electrolyte ultrathin films: a numerical study. J Phys Chem C 119(2):1201–1216

    Article  Google Scholar 

  105. Mashio T et al (2010) Molecular dynamics study of ionomer and water adsorption at carbon support materials. J Phys Chem C 114(32):13739–13745

    Article  Google Scholar 

  106. Jinnouchi R, Kudo K, Kitano N, Morimoto Y (2016) Molecular dynamics simulations on O-2 permeation through Nafion ionomer on platinum surface. Electrochim Acta 188:767–776

    Article  Google Scholar 

  107. Kanamura K, Morikawa H, Umegaki T (2003) Observation of interface between Pt electrode and Nafion membrane. J Electrochem Soc 150(2):A193–A198

    Article  Google Scholar 

  108. He QP, Suraweera NS, Joy DC, Keffer DJ (2013) Structure of the ionomer film in catalyst layers of proton exchange membrane fuel cells. J Phys Chem C 117(48):25305–25316

    Article  Google Scholar 

  109. Kodama K et al (2013) Increase in adsorptivity of sulfonate anions on Pt (111) surface with drying of ionomer. Electrochem Commun 36:26–28

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmet Kusoglu .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Kusoglu, A. (2019). Ionomer Thin Films in PEM Fuel Cells. In: Lipman, T., Weber, A. (eds) Fuel Cells and Hydrogen Production. Encyclopedia of Sustainability Science and Technology Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-7789-5_1021

Download citation

Publish with us

Policies and ethics