Offshore Wind Energy Technology Trends, Challenges, and Risks

  • James F. Manwell
Reference work entry
Part of the Encyclopedia of Sustainability Science and Technology Series book series (ESSTS)



Device attached to the end of a mooring line or tendon for the purpose of limiting the movement of the mooring line or tendon and to transfer loads from a floating structure to the seabed.


Heavy material used to maintain stability of a floating structure.


The part of a wind turbine rotor which produces mechanical forces through the action of the wind.

Cut-in wind speed

Lowest wind speed at hub height at which the wind turbine starts to produce power.

Cut-out wind speed

Highest wind speed at hub height at which the wind turbine is designed to produce power.

External conditions

Factors affecting the design and operation of an offshore wind turbine, including the environmental conditions, other climatic factors, and the electrical network conditions.

Fixed offshore wind turbine

An offshore wind turbine which is supported by the seabed (in distinction to a floating offshore wind turbine).

Floating offshore wind turbine (FOWT)

An offshore wind turbine with a...


Primary Literature

  1. 1.
    IEC (2009) Wind turbines, part 3: design requirements for offshore wind turbines, 61400-3. International Electrotechnical Commission, GenevaGoogle Scholar
  2. 2.
    Vowles HP (1932) Early evolution of power engineering. Isis 17(2):412–420 . Chicago, ILCrossRefGoogle Scholar
  3. 3.
    Nansen F (1897) Farthest north. MacMillan, LondonGoogle Scholar
  4. 4.
    Honnef H (1932) Windkraftwerke. Friedrich Vieweg & Sohn, BraunschweigGoogle Scholar
  5. 5.
    Dörner H (2002) Drei Welten – ein Leben. Prof. Dr. Ulrich Hütter. Hochschullehrer – Konstrukteur – Künstler, 2nd edn. Eigenverlag H. Dörner, HeilbronnGoogle Scholar
  6. 6.
    Heronemus WE (1972) Pollution-free energy from offshore winds. In: Proceedings of 8th annual conference and exposition, Marine Technology Society, Washington, DCGoogle Scholar
  7. 7.
    Casson L (1959) The ancient mariners. Victor Gollancz Ltd, LondonGoogle Scholar
  8. 8.
    Randall RE (1997) Elements of ocean engineering. The Society of Naval Architects and Marine Engineers, Jersey CityGoogle Scholar
  9. 9.
    Musial W, Ram B (2010) Large-scale offshore wind power in the United States assessment of opportunities and barriers NREL/TP-500-40745. National Renewable Energy Laboratory, GoldenGoogle Scholar
  10. 10.
    Manwell JF, McGowan JG, Rogers AL (2009) Wind energy explained: theory, design and application, 2nd edn. Wiley, ChichesterCrossRefGoogle Scholar
  11. 11.
    Manwell JF, Elkinton CN, Rogers AL, McGowan JG (2007) Review of design conditions applicable to offshore wind energy in the United States. Renew Sustain Energy Rev, Elsevier: Amst 11(2):183–364CrossRefGoogle Scholar
  12. 12.
    Wang H, Barthelmie RJ, Pryor SC, Kim H (2014) A new turbulence model for offshore wind turbine standards. Wind Energy 17(10):1587–1604CrossRefGoogle Scholar
  13. 13.
    Gumbel EJ (1958) Statistics of extremes. Columbia University Press, New YorkzbMATHGoogle Scholar
  14. 14.
    Ochi MK (1998) Ocean waves – the stochastic approach. Cambridge University Press, Cambridge, UKCrossRefGoogle Scholar
  15. 15.
    USACE (2002) Coastal engineering manual, CEM M 1110-2-1100. US Army Corps of Engineers (USACE), Washington, DCGoogle Scholar
  16. 16.
    Airy GB (1845) On tides and waves. In: Encyclopedia metropolitana, 5. London, pp 241–396Google Scholar
  17. 17.
    Yuan Z, Huang Z (2010) An experimental study of inertia and drag coefficients for a truncated circular cylinder in regular waves. In: 9th international conference on hydrodynamics, ShanghaiCrossRefGoogle Scholar
  18. 18.
    Houlsby GT, Byrne BW (2003) Foundations for offshore wind turbines. Phil Trans R Soc Lond A 361:2909–2930CrossRefGoogle Scholar
  19. 19.
    Westgate ZJ, De Jong JT (2005) Geotechnical considerations for offshore wind turbines. University of Massachusetts and the Massachusetts Technology Collaborative, AmherstGoogle Scholar
  20. 20.
    van Kuik GAM (2007) The Lanchester–Betz–Joukowsky limit. Wind Energy 10:289–291CrossRefGoogle Scholar
  21. 21.
    Hasager CB, Nygaard NG, Volker PJH, Karagali I, Andersen S, Badger J (2017) Wind farm wake: the 2016 Horns Rev photo case. Energies 10(3):317CrossRefGoogle Scholar
  22. 22.
    Eggleston DM, Stoddard FS (1987) Wind turbine engineering design. Van Nostrand Reinhold, New YorkGoogle Scholar
  23. 23.
    Jonkman J (2005) FAST user’s guide, NREL/EL-500-38230. National Renewable Energy Laboratory, GoldenGoogle Scholar
  24. 24.
    Downing SD, Socie DF (1982) Simple rainflow counting algorithms. Int J Fatigue 4(1):31–40CrossRefGoogle Scholar
  25. 25.
    Jonkman J, Butterfield S, Musial W, Scott G (2009) Definition of a 5-MW reference wind turbine for offshore system development NREL/TP-500-38060. National Renewable Energy Laboratory, GoldenCrossRefGoogle Scholar
  26. 26.
    Jonkman J, Musial W (2010) Offshore code comparison collaboration (OC3) for IEA task 23 offshore wind technology and deployment NREL/TP-5000-48191. National Renewable Energy Laboratory, GoldenCrossRefGoogle Scholar
  27. 27.
    Jonkman J (2010) Definition of the floating system for phase IV of OC3 NREL/TP-500-47535. National Renewable Energy Laboratory, GoldenCrossRefGoogle Scholar
  28. 28.
    Matha D (2010) Model development and loads analysis of an offshore wind turbine on a tension leg platform, with a comparison to other floating turbine concepts NREL/SR-500-45891. National Renewable Energy Laboratory, GoldenGoogle Scholar
  29. 29.
    Robertson AJ, Jonkman J, Masciola M, Song H, Goupee A, Coulling A, Luan C (2014) Definition of the semisubmersible floating system for phase II of OC4 NREL/TP-5000-60601. National Renewable Energy Laboratory, GoldenGoogle Scholar
  30. 30.
    Jonkman J (2007) Dynamics modeling and loads analysis of an offshore floating wind turbine NREL/TP-500-41958. National Renewable Energy Laboratory, GoldenCrossRefGoogle Scholar
  31. 31.
    Wright SD, Rogers AL, Manwell JF, Ellis A (2002) Transmission options for offshore wind farms in the United States. In: Proceedings of AWEA annual conference, PortlandGoogle Scholar
  32. 32.
    Nexan Submarine Cables (2009) [Online]. Available: Accessed 12 Apr 2017
  33. 33.
    Neher MH, McGrath H (1957) The calculation of the temperature rise and load capability of cable systems. AIEE Trans, Part III 76:752–772Google Scholar
  34. 34.
    Elkinton CN (2007) Offshore wind farm layout optimization, PhD dissertation. AmherstGoogle Scholar
  35. 35.
    A2SEA Taking Windpower Offshore [Online]. Available: Accessed 12 Apr 2017
  36. 36.
    Ram B (2009) An integrated risk framework for gigawatt-scale deployments of renewable energy: the U.S. wind energy case NREL/SR-500-47129. National Renewable Energy Laboratory, GoldenGoogle Scholar
  37. 37.
    Koeller J, Koeppel J, Peters W (2006) Offshore wind energy research on environmental impact. Springer Verlag, BerlinCrossRefGoogle Scholar
  38. 38.
    Ozkan D (2010) Financial analysis and cost optimization of offshore wind energy under uncertainty and in deregulated markets. Washington, DCGoogle Scholar
  39. 39.
    Macilwain C (2010) Energy: supergrid. Nature 468:624–625CrossRefGoogle Scholar

Books and Reviews

  1. Barltrop NDP, Adams AJ (1991) Dynamics of fixed marine structures. Butterworth Heinemann, OxfordGoogle Scholar
  2. Barthelmie RJ, Courtney MS, Højstrup J, Larsen SE (1996) Meteorological aspects of offshore wind energy: observations from the Vindeby wind farm. J Wind Eng Ind Aerodyn 62(2–3):191–211CrossRefGoogle Scholar
  3. Burton T, Sharpe D, Jenkins N, Bossanyi E (2011) Wind energy handbook. Wiley, ChichesterCrossRefGoogle Scholar
  4. Cheng PW (2002) A reliability based design methodology for extreme responses of offshore wind turbines. PhD dissertation, Delft University of Technology, DelftGoogle Scholar
  5. Cruz J, Atcheson M (2016) Floating offshore wind energy: the next generation of wind energy. Springer International Publishing AG, SwitzerlandCrossRefGoogle Scholar
  6. Dicorato M, Forte G, Pisani M, Trovato M (2011) Guidelines for assessment of investment cost for offshore wind generation. Renew Energy 36:2043–2051CrossRefGoogle Scholar
  7. Elkinton CN, Manwell JF, McGowan JG (2008) Optimizing the layout of offshore wind energy systems. J Mar Technol Soc 42(2):19–27CrossRefGoogle Scholar
  8. Gardner P, Craig LM, Smith GJ (1998) Electrical systems for offshore wind farms. In: Proceedings of 1998 British Wind Energy Associates Conference, Professional Engineering Publishing Limited, UKGoogle Scholar
  9. Gerdes G, Tiedemann A, Zeelenberg S (2010) Case study: European offshore wind farms – a survey for the analysis of the experiences and lessons learnt by developers of offshore wind farms Deutsche WindGuard GmbH, Deutsche Energie-Agentur GmbH (dena). University of Groningen. Available from
  10. GL (2005) Guidelines for the certification of offshore wind turbines. Germanischer Lloyd, HamburgGoogle Scholar
  11. Hsu SA (2003) Estimating overwater friction velocity and exponent of power-law wind profile from gust factor during storms. J Water Port Coast Ocean Eng 129(4):–174, 177. ASCECrossRefGoogle Scholar
  12. Kühn M (2001) Dynamics and design optimisation of offshore wind energy conversion systems. PhD dissertation, Delft University of Technology, DelftGoogle Scholar
  13. Lange B, Højstrup J (1999) The influence of waves on the offshore wind resource. In: Proceedings of 1991 European wind energy conference, NiceGoogle Scholar
  14. Musial W (2007) Offshore wind electricity: a viable energy option for the coastal United States. Mar Technol Soc J 41(3):32–43. Columbia, MDCrossRefGoogle Scholar
  15. Twidell J, Gaudiosi G (2009) Offshore wind power. Multi-Science Publishing Co Ltd, BrentwoodGoogle Scholar
  16. Van der Tempel J (2006) Design of support structures for offshore wind turbines. PhD dissertation, Delft University of Technology, DelftGoogle Scholar
  17. Veldkamp D (2006) Chances in wind energy: a probabilistic approach to wind turbine fatigue design. PhD dissertation, Delft University of Technology, DelftGoogle Scholar
  18. Westinghouse Electric Corp (1979) Design study and economic assessment of multi-unit offshore wind energy conversion systems application, DOE WASH-2830-78/4Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mechanical and Industrial EngineeringUniversity of MassachusettsAmherstUSA

Personalised recommendations