Molecular Pathology of Carcinomas of the Ampullary/Periampullary Region

  • Lena Haeberle
  • Jasmin Riemer
  • Irene Esposito
Reference work entry


The ampullary/periampullary region is a complex anatomical environment giving rise to a number of heterogeneous malignancies. Ampullary carcinomas should be distinguished from periampullary duodenal, biliary, and pancreatic adenocarcinomas. A meticulous classification of periampullary/ampullary carcinomas is of great importance, as the biological behavior of the various types of carcinomas differs significantly, affecting their prognosis and therefore their clinical management. Subtypes of ampullary carcinomas, namely, intra-ampullary, ampullary ductal, periampullary duodenal, and ampullary NOS (not otherwise specified) carcinomas, have been recently proposed based on a detailed assessment of their gross appearance in correlation with microscopic findings. Moreover, ampullary carcinomas can be further classified as intestinal type, pancreatobiliary type, or mixed type based on the tumor’s histomorphology and immunohistochemical profile.

In recent times, crucial advances have been made in characterizing carcinomas of the ampullary/periampullary region on a molecular level. Several molecular patterns seem to correlate with prognosis. Moreover, some molecular pathways, e.g., the WNT pathway, represent potential therapeutic targets to be used in the context of personalized medicine in the future. Gene panel analysis is a promising approach that could be used to translate these findings into clinical applications.


Periampullary cancer Ampullary cancer Duodenal cancer Distal bile duct cancer Precursor lesions Molecular pathology Next-generation sequencing NGS 


  1. 1.
    Baggenstoss AH. Major duodenal papilla. Variations of pathologic interest and lesions of the mucosa. Arch Pathol. 1938;26:853–68.Google Scholar
  2. 2.
    Fischer HP, Zhou H. Pathogenesis of carcinoma of the papilla of Vater. J Hepato-Biliary-Pancreat Surg. 2004;11(5):301–9.CrossRefGoogle Scholar
  3. 3.
    Sarmiento JM, Nagomey DM, Sarr MG, et al. Periampullary cancers: are there differences? Surg Clin North Am. 2001;81(3):543–55.CrossRefGoogle Scholar
  4. 4.
    Michl P, Neesse A, Gress TM. Molecular pathology of ampullary, intra-pancreatic bile duct and duodenal cancers. In: Pancreatic cancer. New York: Springer; 2010. p. 233–53.CrossRefGoogle Scholar
  5. 5.
    Esposito I, Friess H, Buchler MW. Carcinogenesis of cancer of the papilla and ampulla: pathophysiological facts and molecular biological mechanisms. Langenbeck’s Arch Surg. 2001;386(3):163–71.CrossRefGoogle Scholar
  6. 6.
    Zhou H, Schaefer N, Wolff M, et al. Carcinoma of the ampulla of Vater: comparative histologic/immunohistochemical classification and follow-up. Am J Surg Pathol. 2004;28(7):875–82.CrossRefGoogle Scholar
  7. 7.
    He J, Ahuja N, Makary MA, et al. 2564 resected periampullary adenocarcinomas at a single institution: trends over three decades. HPB (Oxford). 2014;16(1):83–90.CrossRefGoogle Scholar
  8. 8.
    Chen JW, Bhandari M, Astill DS, et al. Predicting patient survival after pancreaticoduodenectomy for malignancy: histopathological criteria based on perineural infiltration and lymphovascular invasion. HPB (Oxford). 2010;12(2):101–8.CrossRefGoogle Scholar
  9. 9.
    Chandrasegaram MD, Chiam SC, Chen JW, et al. Distribution and pathological features of pancreatic, ampullary, biliary and duodenal cancers resected with pancreaticoduodenectomy. World J Surg Oncol. 2015;13:85.CrossRefGoogle Scholar
  10. 10.
    Westgaard A, Pomianowska E, Clausen OP, et al. Intestinal-type and pancreatobiliary-type adenocarcinomas: how does ampullary carcinoma differ from other periampullary malignancies? Ann Surg Oncol. 2013;20(2):430–9.CrossRefGoogle Scholar
  11. 11.
    Esposito I, Kleeff J, Bergmann F, et al. Most pancreatic cancer resections are R1 resections. Ann Surg Oncol. 2008;15(6):1651–60.CrossRefGoogle Scholar
  12. 12.
    Verbeke CS, Knapp J, Gladhaug IP. Tumour growth is more dispersed in pancreatic head cancers than in rectal cancer: implications for resection margin assessment*. Histopathology. 2011;59(6):1111–21.CrossRefGoogle Scholar
  13. 13.
    Verbeke CS, Gladhaug IP. Resection margin involvement and tumour origin in pancreatic head cancer. Br J Surg. 2012;99(8):1036–49.CrossRefGoogle Scholar
  14. 14.
    Adsay V, Ohike N, Tajiri T, et al. Ampullary region carcinomas: definition and site specific classification with delineation of four clinicopathologically and prognostically distinct subsets in an analysis of 249 cases. Am J Surg Pathol. 2012;36(11):1592–608.CrossRefGoogle Scholar
  15. 15.
    Kimura W, Futakawa N, Yamagata S, et al. Different clinicopathologic findings in two histologic types of carcinoma of papilla of Vater. Jpn J Cancer Res. 1994;85(2):161–6.CrossRefGoogle Scholar
  16. 16.
    Albores-Saavedra J, Menck HR, Scoazec JC, et al. Carcinoma of the gallbladder and extrahepatic bile ducts. In: Hamilton SR, Aaltonen LA, editors. Pathology and genetics of tumours of the digestive system. Lyon: IARC Press; 2000.Google Scholar
  17. 17.
    Westgaard A, Tafjord S, Farstad IN, et al. Pancreatobiliary versus intestinal histologic type of differentiation is an independent prognostic factor in resected periampullary adenocarcinoma. BMC Cancer. 2008;8(1):1–11.CrossRefGoogle Scholar
  18. 18.
    Ang DC, Shia J, Tang LH, et al. The utility of immunohistochemistry in subtyping adenocarcinoma of the ampulla of vater. Am J Surg Pathol. 2014;38(10):1371–9.CrossRefGoogle Scholar
  19. 19.
    Ohike N, Kim GE, Tajiri T, et al. Intra-ampullary papillary-tubular neoplasm (IAPN): characterization of tumoral intraepithelial neoplasia occurring within the ampulla: a clinicopathologic analysis of 82 cases. Am J Surg Pathol. 2010;34(12):1731–48.CrossRefGoogle Scholar
  20. 20.
    Howe JR, Klimstra DS, Cordon-Cardo C, et al. K-ras mutation in adenomas and carcinomas of the ampulla of vater. Clin Cancer Res. 1997;3(1):129–33.PubMedGoogle Scholar
  21. 21.
    Phipps AI, Buchanan DD, Makar KW, et al. KRAS-mutation status in relation to colorectal cancer survival: the joint impact of correlated tumour markers. Br J Cancer. 2013;108(8):1757–64.CrossRefGoogle Scholar
  22. 22.
    Morris JPT, Wang SC, Hebrok M. KRAS, Hedgehog, Wnt and the twisted developmental biology of pancreatic ductal adenocarcinoma. Nat Rev Cancer. 2010;10(10):683–95.CrossRefGoogle Scholar
  23. 23.
    Younes M, Riley S, Genta RM, et al. p53 protein accumulation in tumors of the ampulla of vater. Cancer. 1995;76(7):1150–4.CrossRefGoogle Scholar
  24. 24.
    Sessa F, Furlan D, Zampatti C, et al. Prognostic factors for ampullary adenocarcinomas: tumor stage, tumor histology, tumor location, immunohistochemistry and microsatellite instability. Virchows Arch. 2007;451(3):649–57.CrossRefGoogle Scholar
  25. 25.
    Gingras MC, Covington KR, Chang DK, et al. Ampullary cancers harbor ELF3 tumor suppressor gene mutations and exhibit frequent WNT dysregulation. Cell Rep. 2016;14(4):907–19.CrossRefGoogle Scholar
  26. 26.
    Gleeson FC, Kipp BR, Voss JS, et al. Endoscopic ultrasound fine-needle aspiration cytology mutation profiling using targeted next-generation sequencing: personalized care for rectal cancer. Am J Clin Pathol. 2015;143(6):879–88.CrossRefGoogle Scholar
  27. 27.
    Schottenfeld D, Beebe-Dimmer JL, Vigneau FD. The epidemiology and pathogenesis of neoplasia in the small intestine. Ann Epidemiol. 2009;19(1):58–69.CrossRefGoogle Scholar
  28. 28.
    Cloyd JM, George E, Visser BC. Duodenal adenocarcinoma: advances in diagnosis and surgical management. World J Gastrointest Surg. 2016;8(3):212–21.CrossRefGoogle Scholar
  29. 29.
    Ushiku T, Arnason T, Fukayama M, et al. Extra-ampullary duodenal adenocarcinoma. Am J Surg Pathol. 2014;38(11):1484–93.CrossRefGoogle Scholar
  30. 30.
    Aparicio T, Svrcek M, Zaanan A, et al. Small bowel adenocarcinoma phenotyping, a clinicobiological prognostic study. Br J Cancer. 2013;109(12):3057–66.CrossRefGoogle Scholar
  31. 31.
    Aparicio T, Zaanan A, Svrcek M, et al. Small bowel adenocarcinoma: epidemiology, risk factors, diagnosis and treatment. Dig Liver Dis. 2014;46(2):97–104.CrossRefGoogle Scholar
  32. 32.
    Shaib Y, El-Serag HB. The epidemiology of cholangiocarcinoma. Semin Liver Dis. 2004;24(2):115–25.CrossRefGoogle Scholar
  33. 33.
    Esposito I, Schirmacher P. Pathological aspects of cholangiocarcinoma. HPB (Oxford). 2008;10(2):83–6.CrossRefGoogle Scholar
  34. 34.
    Kloppel G, Adsay V, Konukiewitz B, et al. Precancerous lesions of the biliary tree. Best Pract Res Clin Gastroenterol. 2013;27(2):285–97.CrossRefGoogle Scholar
  35. 35.
    Schlitter AM, Born D, Bettstetter M, et al. Intraductal papillary neoplasms of the bile duct: stepwise progression to carcinoma involves common molecular pathways. Mod Pathol. 2014;27(1):73–86.CrossRefGoogle Scholar
  36. 36.
    Schlitter AM, Jang KT, Kloppel G, et al. Intraductal tubulopapillary neoplasms of the bile ducts: clinicopathologic, immunohistochemical, and molecular analysis of 20 cases. Mod Pathol. 2016;29(1):93.CrossRefGoogle Scholar
  37. 37.
    Churi CR, Shroff R, Wang Y, et al. Mutation profiling in cholangiocarcinoma: prognostic and therapeutic implications. PLoS ONE. 2014;9(12):e115383.CrossRefGoogle Scholar
  38. 38.
    Simbolo M, Fassan M, Ruzzenente A, et al. Multigene mutational profiling of cholangiocarcinomas identifies actionable molecular subgroups. Oncotarget. 2014;5(9):2839–52.CrossRefGoogle Scholar
  39. 39.
    Moozar KL, Madlensky L, Berk T, et al. Slow progression of periampullary neoplasia in familial adenomatous polyposis. J Gastrointest Surg. 2002;6(6):831–7; discussion 837.CrossRefGoogle Scholar
  40. 40.
    Vasen HF, Bulow S, Myrhoj T, et al. Decision analysis in the management of duodenal adenomatosis in familial adenomatous polyposis. Gut. 1997;40(6):716–9.CrossRefGoogle Scholar
  41. 41.
    Kadmon M, Tandara A, Herfarth C. Duodenal adenomatosis in familial adenomatous polyposis coli. A review of the literature and results from the Heidelberg Polyposis Register. Int J Color Dis. 2001;16(2):63–75.CrossRefGoogle Scholar
  42. 42.
    de Campos FG, Perez RO, Imperiale AR, et al. Evaluating causes of death in familial adenomatous polyposis. J Gastrointest Surg. 2010;14(12):1943–9.CrossRefGoogle Scholar
  43. 43.
    Koornstra JJ. Small bowel endoscopy in familial adenomatous polyposis and Lynch syndrome. Best Pract Res Clin Gastroenterol. 2012;26(3):359–68.CrossRefGoogle Scholar
  44. 44.
    Raghav K, Overman MJ. Small bowel adenocarcinomas – existing evidence and evolving paradigms. Nat Rev Clin Oncol. 2013;10(9):534–44.CrossRefGoogle Scholar
  45. 45.
    Bansidhar BJ. Extracolonic manifestations of Lynch syndrome. Clin Colon Rectal Surg. 2012;25(2):103–10.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of PathologyHeinrich Heine University of DuesseldorfDuesseldorfGermany

Section editors and affiliations

  • Raul A. Urrutia
    • 1
  • Markus W. Büchler
    • 2
  • John Neoptolemos
    • 3
  1. 1.Mayo Clinic Cancer CenterMayo ClinicRochesterUSA
  2. 2.Department of General, Visceral and Transplantation SurgeryUniversity of HeidelbergHeidelbergGermany
  3. 3.Division of Surgery and OncologyUniversity of LiverpoolLiverpoolUK

Personalised recommendations