Pancreatic Cancer pp 1305-1324 | Cite as

Approaching Pancreatic Cancer Phenotypes via Metabolomics

  • Peter McGranaghan
  • Ulrike Rennefahrt
  • Beate Kamlage
  • Regina Reszka
  • Philipp Schatz
  • Bianca Bethan
  • Julia Mayerle
  • Markus M. Lerch
Reference work entry


Metabolomics, one of the latest omics’ technologies, focuses on the global, quantitative, and simultaneous measurement of endogenous metabolites in a biological sample. Investigation of either individual metabolites, a panel of metabolites, or a broad metabolite profile (metabolome) can be carried out in cells, tissues, or body fluids. Recent publications indicate that there is an enormous, constantly growing multitude of metabolomics applications in oncology. As a translational research tool, metabolomics provides a link between basic in vitro laboratory data to in vivo preclinical results and clinical oncology and enables systems biology insights. In the present chapter, the current and potential future applications of metabolomics in PDAC research are focused on the clinical aspects of diagnostics.


Metabolomics Metabolite profiling Mass spectrometry Nuclear magnetic resonance Metabolism Biomarker Systems biology approach Stable isotope-labeled metabolites Metabolite flux MS-based metabolite imaging 


  1. 1.
    Kaddurah-Daouk R, Kristal BS, Weinshilboum RM. Metabolomics: a global biochemical approach to drug response and disease. Annu Rev Pharmacol Toxicol. 2008;48:653–83.CrossRefGoogle Scholar
  2. 2.
    Fiehn O. Metabolomics – the link between genotypes and phenotypes. Plant Mol Biol. 2002;48(1–2):155–71.CrossRefGoogle Scholar
  3. 3.
    Spratlin JL, Serkova NJ, Eckhardt SG. Clinical applications of metabolomics in oncology: a review. Clin Cancer Res. 2009;15(2):431–40.CrossRefGoogle Scholar
  4. 4.
    Dettmer K, Aronov PA, Hammock BD. Mass spectrometry-based metabolomics. Mass Spectrom Rev. 2007;26(1):51–78.CrossRefGoogle Scholar
  5. 5.
    Fernie AR, Trethewey RN, Krotzky AJ, Willmitzer L. Metabolite profiling: from diagnostics to systems biology. Nat Rev Mol Cell Biol. 2004;5(9):763–9.CrossRefGoogle Scholar
  6. 6.
    van der Greef J, Smilde AK. Symbiosis of chemometrics and metabolomics: past, present, and future. J Chemom. 2005;19(5–7):376–86.CrossRefGoogle Scholar
  7. 7.
    Nicholson JK, Lindon JC. Systems biology: metabonomics. Nature. 2008;455(7216):1054–6.CrossRefGoogle Scholar
  8. 8.
    Bothwell JH, Griffin JL. An introduction to biological nuclear magnetic resonance spectroscopy. Biol Rev. 2011;86(2):493–510.CrossRefGoogle Scholar
  9. 9.
    Griffin JL. Metabonomics: NMR spectroscopy and pattern recognition analysis of body fluids and tissues for characterisation of xenobiotic toxicity and disease diagnosis. Curr Opin Chem Biol. 2003;7(5):648–54.CrossRefGoogle Scholar
  10. 10.
    Defernez M, Colquhoun IJ. Factors affecting the robustness of metabolite fingerprinting using 1 H NMR spectra. Phytochemistry. 2003;62(6):1009–17.CrossRefGoogle Scholar
  11. 11.
    Büscher JM, Czernik D, Ewald JC, Sauer U, Zamboni N. Cross-platform comparison of methods for quantitative metabolomics of primary metabolism. Anal Chem. 2009;81(6):2135–43.CrossRefGoogle Scholar
  12. 12.
    Bennett BD, Yuan J, Kimball EH, Rabinowitz JD. Absolute quantitation of intracellular metabolite concentrations by an isotope ratio-based approach. Nat Protoc. 2008;3(8):1299–311.CrossRefGoogle Scholar
  13. 13.
    Perera RM, Bardeesy N. Pancreatic cancer metabolism: breaking it down to build it back up. Cancer Discov. 2015;5(12):1247–61.CrossRefGoogle Scholar
  14. 14.
    Kleeff J, Korc M, Apte M, La Vecchia C, Johnson CD, Biankin AV, Neale RE, Tempero M, Tuveson DA, Hruban RH, Neoptolemos JP. Pancreatic cancer. Nat Rev Dis Prim. 2015;2:16022.CrossRefGoogle Scholar
  15. 15.
    Ying H, Kimmelman AC, Lyssiotis CA, Hua S, Chu GC, Fletcher-Sananikone E, Locasale JW, Son J, Zhang H, Coloff JL, Yan H, et al. Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism. Cell. 2012;149(3):656–70.CrossRefGoogle Scholar
  16. 16.
    Dunn WB, Broadhurst D, Begley P, Zelena E, Francis-McIntyre S, Anderson N, Brown M, Knowles JD, Halsall A, Haselden JN, Nicholls AW, et al. Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nat Protoc. 2011;6(7):1060–83.CrossRefGoogle Scholar
  17. 17.
    Want EJ, Masson P, Michopoulos F, Wilson ID, Theodoridis G, Plumb RS, Shockcor J, Loftus N, Holmes E, Nicholson JK. Global metabolic profiling of animal and human tissues via UPLC-MS. Nat Protoc. 2013;8(1):17–32.CrossRefGoogle Scholar
  18. 18.
    Kamlage B, Maldonado SG, Bethan B, Peter E, Schmitz O, Liebenberg V, Schatz P. Quality markers addressing preanalytical variations of blood and plasma processing identified by broad and targeted metabolite profiling. Clin Chem. 2014;60(2):399–412.CrossRefGoogle Scholar
  19. 19.
    Daemen A, Peterson D, Sahu N, McCord R, Du X, Liu B, Kowanetz K, Hong R, Moffat J, Gao M, Boudreau A, et al. Metabolite profiling stratifies pancreatic ductal adenocarcinomas into subtypes with distinct sensitivities to metabolic inhibitors. Proc Natl Acad Sci. 2015;112(32):E4410–7.CrossRefGoogle Scholar
  20. 20.
    Fujimura Y, Ikenaga N, Ohuchida K, Setoyama D, Irie M, Miura D, Wariishi H, Murata M, Mizumoto K, Hashizume M, Tanaka M. Mass spectrometry-based metabolic profiling of gemcitabine-sensitive and gemcitabine-resistant pancreatic cancer cells. Pancreas. 2014;43(2):311–8.CrossRefGoogle Scholar
  21. 21.
    Grüner BM, Winkelmann I, Feuchtinger A, Sun N, Balluff B, Teichmann N, Herner A, Kalideris E, Steiger K, Braren R, Aichler M, et al. Modeling therapy response and spatial tissue distribution of erlotinib in pancreatic cancer. Mol Cancer Ther. 2016;15(5):1145–52.CrossRefGoogle Scholar
  22. 22.
    Rosenfeldt MT, O’Prey J, Morton JP, Nixon C, MacKay G, Mrowinska A, Au A, Rai TS, Zheng L, Ridgway R, Adams PD, et al. p53 status determines the role of autophagy in pancreatic tumour development. Nature. 2013;504(7479):296–300.CrossRefGoogle Scholar
  23. 23.
    Fujiwara Y, Kobayashi T, Chayahara N, Imamura Y, Toyoda M, Kiyota N, Mukohara T, Nishiumi S, Azuma T, Yoshida M, Minami H. Metabolomics evaluation of serum markers for cachexia and their intra-day variation in patients with advanced pancreatic cancer. PLoS One. 2014;9(11):e113259.CrossRefGoogle Scholar
  24. 24.
    Mayers JR, Wu C, Clish CB, Kraft P, Torrence ME, Fiske BP, et al. Elevation of circulating branched-chain amino acids is an early event in human pancreatic adenocarcinoma development. Nat Med. 2014;20(10):1193–8.CrossRefGoogle Scholar
  25. 25.
    Urayama S, Zou W, Brooks K, Tolstikov V. Comprehensive mass spectrometry based metabolic profiling of blood plasma reveals potent discriminatory classifiers of pancreatic cancer. Rapid Commun Mass Spectrom. 2010;24(5):613–20.CrossRefGoogle Scholar
  26. 26.
    Xie G, Lu L, Qiu Y, Ni Q, Zhang W, Gao YT, et al. Plasma metabolite biomarkers for the detection of pancreatic cancer. J Proteome Res. 2015;14(2):1195–202.CrossRefGoogle Scholar
  27. 27.
    Davis VW, Schiller DE, Eurich D, Bathe OF, Sawyer MB. Pancreatic ductal adenocarcinoma is associated with a distinct urinary metabolomic signature. Ann Surg Oncol. 2013;20(3):415–23.CrossRefGoogle Scholar
  28. 28.
    Kobayashi T, Nishiumi S, Ikeda A, Yoshie T, Sakai A, Matsubara A, et al. A novel serum metabolomics-based diagnostic approach to pancreatic cancer. Cancer Epidemiol Biomark Prev. 2013;22(4):571–9.CrossRefGoogle Scholar
  29. 29.
    Sakai A, Suzuki M, Kobayashi T, Nishiumi S, Yamanaka K, Hirata Y, Nakagawa T, Azuma T, Yoshida M. Pancreatic cancer screening using a multiplatform human serum metabolomics system. Biomark Med. 2016;10(6):577–86.CrossRefGoogle Scholar
  30. 30.
    Nishiumi S, Shinohara M, Ikeda A, Yoshie T, Hatano N, Kakuyama S, et al. Serum metabolomics as a novel diagnostic approach for pancreatic cancer. Metabolomics. 2010;6:518–28.CrossRefGoogle Scholar
  31. 31.
    Di Gangi IM, Mazza T, Fontana A, Copetti M, Fusilli C, Ippolito A, Mattivi F, Latiano A, Andriulli A, Vrhovsek U, Pazienza V. Metabolomic profile in pancreatic cancer patients: a consensus-based approach to identify highly discriminating metabolites. Oncotarget. 2016;7(5):5815–29.CrossRefGoogle Scholar
  32. 32.
    Napoli C, Sperandio N, Lawlor RT, Scarpa A, Molinari H, Assfalg M. Urine metabolic signature of pancreatic ductal adenocarcinoma by (1)h nuclear magnetic resonance: identification, mapping, and evolution. J Proteome Res. 2012;11(2):1274–83.CrossRefGoogle Scholar
  33. 33.
    Mayerle J, Kalthoff H, Reszka R, Kamlage B, Peter E, Schniewind B, González Maldonado S, Pilarsky C, Heidecke CD, Schatz P, Distler M, Scheiber JA, Mahajan UM, Weiss FU, Grützmann R, Lerch MM. Metabolic biomarker signature to differentiate pancreatic ductal adenocarcinoma from chronic pancreatitis. Gut. 2017 Jan 20. pii: gutjnl-2016-312432.
  34. 34.
    Leichtle AB, Ceglarek U, Weinert P, Nakas CT, Nuoffer J-M, Kase J, et al. Pancreatic carcinoma, pancreatitis, and healthy controls: metabolite models in a three-class diagnostic dilemma. Metabolomics. 2013;9(3):677–87.CrossRefGoogle Scholar
  35. 35.
    Sugimoto M, Wong DT, Hirayama A, Soga T, Tomita M. Capillary electrophoresis mass spectrometry-based saliva metabolomics identified oral, breast and pancreatic cancer-specific profiles. Metabolomics. 2010;6(1):78–95.CrossRefGoogle Scholar
  36. 36.
    Zhang G, He P, Tan H, Budhu A, Gaedcke J, Ghadimi BM, et al. Integration of metabolomics and transcriptomics revealed a fatty acid network exerting growth inhibitory effects in human pancreatic cancer. Clin Cancer Res. 2013;19(18):4983–93.CrossRefGoogle Scholar
  37. 37.
    Fontana A, Copetti M, Di Gangi IM, Mazza T, Tavano F, Gioffreda D, Mattivi F, Andriulli A, Vrhovsek U, Pazienza V. Development of a metabolites risk score for one-year mortality risk prediction in pancreatic adenocarcinoma patients. Oncotarget. 2016;7(8):8968–78.CrossRefGoogle Scholar
  38. 38.
    Raftery MD, Asiago VM, Owusu-sarfo K, Xi B, Inventors, Purdue Research Foundation, Assignee. Identification of blood based metabolite biomarkers of pancreatic cancer. United States patent application US 14/465,535. 2015 Feb 26.Google Scholar
  39. 39.
    Pastural E, Ritchie S, Inventors, Phenomenome Discoveries Inc., Assignee. Serum-based biomarkers of pancreatic cancer and uses thereof for disease detection and diagnosis. United States patent application US 13/499,369. 2010 Oct 1.Google Scholar
  40. 40.
    Reszka R, Kamlage B, Kalthoff H, Schniewind B, Mayerle J, Lerch MM, Pilarsky C, Grützmann R, Inventors, Metanomics Health GmbH, Assignee. Means and methods for diagnosing pancreatic cancer in a subject. United States patent application US 14/361,460. 2012 Nov 29.Google Scholar
  41. 41.
    Park WG, Pasricha PJ, Peltz G, Lowe A, Inventors, The Board of Trustees of the Leland Stanford Junior University, Assignee. Biomarkers for distinguishing benign, pre-malignant, and malignant pancreatic cysts. United States patent application US 14/180,892. 2014 Aug21.Google Scholar
  42. 42.
    Fernández-del Castillo C, Targarona J, Thayer SP, Rattner DW, Brugge WR, Warshaw AL. Incidental pancreatic cysts: clinicopathologic characteristics and comparison with symptomatic patients. Arch Surg. 2003;138(4):427–34.CrossRefGoogle Scholar
  43. 43.
    Sah RP, Nagpal SJ, Mukhopadhyay D, Chari ST. New insights into pancreatic cancer-induced paraneoplastic diabetes. Nat Rev Gastroenterol Hepatol. 2013;10(7):423–33.CrossRefGoogle Scholar
  44. 44.
    Muniraj T, Chari ST. Diabetes and pancreatic cancer. Minerva Gastroenterol Dietol. 2012;58(4):331–45.PubMedPubMedCentralGoogle Scholar
  45. 45.
    Chari ST, Leibson CL, Rabe KG, Timmons LJ, Ransom J, De Andrade M, Petersen GM. Pancreatic cancer–associated diabetes mellitus: prevalence and temporal association with diagnosis of cancer. Gastroenterology. 2008;134(1):95–101.CrossRefGoogle Scholar
  46. 46.
    Swierczynski J, Hebanowska A, Sledzinski T. Role of abnormal lipid metabolism in development, progression, diagnosis and therapy of pancreatic cancer. World J Gastroenterol. 2014;20(9):2279–303.CrossRefGoogle Scholar
  47. 47.
    Guillaumond F, Bidaut G, Ouaissi M, Servais S, Gouirand V, Olivares O, Lac S, Borge L, Roques J, Gayet O, Pinault M, et al. Cholesterol uptake disruption, in association with chemotherapy, is a promising combined metabolic therapy for pancreatic adenocarcinoma. Proc Natl Acad Sci. 2015;112(8):2473–8.CrossRefGoogle Scholar
  48. 48.
    Ritchie SA, Chitou B, Zheng Q, Jayasinghe D, Jin W, Mochizuki A, Goodenowe DB. Pancreatic cancer serum biomarker PC-594: diagnostic performance and comparison to CA19-9. World J. Gastroenterol: WJG. 2015;21(21):6604–12.CrossRefGoogle Scholar
  49. 49.
    Kamlage B, Reszka R, Peter E, Kastler J, Schatz P, Kalthoff H, Schniewind B, Mayerle J, Lerch M, Pilarsky C, Grützmann R, Inventors, Metanomics Health GmbH, Assignee. Means and methods for diagnosing pancreatic cancer in a subject based on a metabolite panel. WO/2015/091962. 2015 June 25.Google Scholar
  50. 50.
    Kell DB. Systems biology, metabolic modelling and metabolomics in drug discovery and development. Drug Discov Today. 2006;11(23):1085–92.CrossRefGoogle Scholar
  51. 51.
    Wheelock CE, Wheelock ÅM, Kawashima S, Diez D, Kanehisa M, van Erk M, et al. Systems biology approaches and pathway tools for investigating cardiovascular disease. Mol BioSyst. 2009;5(6):588–602.CrossRefGoogle Scholar
  52. 52.
    Quinones MP, Kaddurah-Daouk R. Metabolomics tools for identifying biomarkers for neuropsychiatric diseases. Neurobiol Dis. 2009;35(2):165–76.CrossRefGoogle Scholar
  53. 53.
    Balog J, Sasi-Szabó L, Kinross J, Lewis MR, Muirhead LJ, Veselkov K, Mirnezami R, Dezső B, Damjanovich L, Darzi A, Nicholson JK. Intraoperative tissue identification using rapid evaporative ionization mass spectrometry. Sci Transl Med. 2013;5(194):194ra93.CrossRefGoogle Scholar
  54. 54.
    Droste P, Weitzel M, Wiechert W. Visual exploration of isotope labeling networks in 3D. Bioprocess Biosyst Eng. 2008;31(3):227–39.CrossRefGoogle Scholar
  55. 55.
    Sauer U. Metabolic networks in motion: 13C-based flux analysis. Mol Syst Biol. 2006;2:62.CrossRefGoogle Scholar
  56. 56.
    Hollywood K, Brison DR, Goodacre R. Metabolomics: current technologies and future trends. Proteomics. 2006;6(17):4716–23.CrossRefGoogle Scholar
  57. 57.
    Cornett DS, Reyzer ML, Chaurand P, Caprioli RM. MALDI imaging mass spectrometry: molecular snapshots of biochemical systems. Nat Methods. 2007;4(10):828–33.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Peter McGranaghan
    • 1
  • Ulrike Rennefahrt
    • 1
  • Beate Kamlage
    • 1
  • Regina Reszka
    • 1
  • Philipp Schatz
    • 1
  • Bianca Bethan
    • 1
  • Julia Mayerle
    • 2
    • 3
  • Markus M. Lerch
    • 2
  1. 1.Metanomics HealthBerlinGermany
  2. 2.Klinik für Innere Medizin AUniversitaetsmedizin der Ernst-Moritz-Arndt-Universitaet GreifswaldGreifswaldGermany
  3. 3.Medizinische Klinik IIKlinikum der Universitaet Muenchen-GroßhadernMuenchenGermany

Section editors and affiliations

  • John Neoptolemos
    • 1
  • Raul A. Urrutia
    • 2
  • James L. Abbruzzese
    • 3
  • Markus W. Büchler
    • 4
  1. 1.Division of Surgery and OncologyUniversity of LiverpoolLiverpoolUK
  2. 2.Mayo Clinic Cancer CenterMayo ClinicRochesterUSA
  3. 3.Duke University Medical CenterDurhamUSA
  4. 4.Department of General, Visceral and Transplantation SurgeryUniversity of HeidelbergHeidelbergGermany

Personalised recommendations