Advertisement

Diagnostic Biomarkers

  • Anne Macgregor-Das
  • Michael Goggins
Reference work entry

Abstract

Pancreatic adenocarcinoma is the fourth leading cause of cancer death and the most deadly of all solid malignancies. Current methods for the early detection and diagnosis of pancreatic adenocarcinoma are largely ineffective and not feasible for uncovering small, often treatable precursor lesions in the general population. The discovery of biomarkers that aid in the early detection of pancreatic cancer would help to improve outcomes in patients and be of invaluable clinical benefit. This review discusses important considerations for the development of diagnostic biomarkers and profiles the promising molecular markers that have been evaluated in recent years.

Keywords

Pancreatic cancer PanIN (pancreatic intraepithelial neoplasia) IPMN (intraductal papillary mucinous neoplasm) MCNs (mucinous cystic neoplasms) CA19-9 Circulating tumor DNA EUS (endoscopic ultrasound) Early detection KRAS Mutation Pancreatic juice Pancreatic cyst 

References

  1. 1.
    Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin. 2016;66(1):7–30.CrossRefGoogle Scholar
  2. 2.
    Rahib L, Smith BD, Aizenberg R, Rosenzweig AB, Fleshman JM, Matrisian LM. Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res. 2014;74(11):2913–21.CrossRefGoogle Scholar
  3. 3.
    Vasen H, Ibrahim I, Ponce CG, Slater EP, Matthai E, Carrato A, et al. Benefit of surveillance for pancreatic cancer in high-risk individuals: outcome of long-term prospective follow-up studies from three European expert centers. J Clin Oncol Off J Am Soc Clin Oncol. 2016;34(17):2010–9.CrossRefGoogle Scholar
  4. 4.
    Canto MI, Harinck F, Hruban RH, Offerhaus GJ, Poley JW, Fockens P, et al. International consensus recommendations on the management of patients with increased risk for familial pancreatic cancer (The Cancer of the Pancreas Screening (CAPS) consortium summit). Gut. 2013;62:339–47.CrossRefGoogle Scholar
  5. 5.
    Chari ST, Leibson CL, Rabe KG, Ransom J, de Andrade M, Petersen GM. Probability of pancreatic cancer following diabetes: a population-based study. Gastroenterology. 2005;129(2):504–11.CrossRefGoogle Scholar
  6. 6.
    Fleisher M, Dnistrian A, Sturgeon C, Lamerz R, Witliff J. Tumor markers: physiology, pathobiology, technology and clinical applications. Chicago: AACC press; 2002.Google Scholar
  7. 7.
    Rosty C, Christa L, Kuzdzal S, Baldwin WM, Zahurak ML, Carnot F, et al. Identification of hepatocarcinoma-intestine-pancreas/pancreatitis-associated protein I as a biomarker for pancreatic ductal adenocarcinoma by protein biochip technology. Cancer Res. 2002;62(6):1868–75.PubMedGoogle Scholar
  8. 8.
    Canto MI, Goggins M, Hruban RH, Petersen GM, Giardiello FM, Yeo C, et al. Screening for early pancreatic neoplasia in high-risk individuals: a prospective controlled study. Clin Gastroenterol Hepatol. 2006;4(6):766–81.CrossRefGoogle Scholar
  9. 9.
    Canto MI, Hruban RH, Fishman EK, Kamel IR, Schulick R, Zhang Z, et al. Frequent detection of pancreatic lesions in asymptomatic high-risk individuals. Gastroenterology. 2012;142(4):796–804. quiz e14-5CrossRefGoogle Scholar
  10. 10.
    Bartsch DK, Slater EP, Carrato A, Ibrahim IS, Guillen-Ponce C, Vasen HF, et al. Refinement of screening for familial pancreatic cancer. Gut. 2016;65:1314–21.CrossRefGoogle Scholar
  11. 11.
    Hruban RH, Goggins M, Parsons J, Kern SE. Progression model for pancreatic cancer. Clin Cancer Res. 2000;6(8):2969–72.Google Scholar
  12. 12.
    Cubilla AL, Fitzgerald PJ. Morphological lesions associated with human primary invasive nonendocrine pancreas cancer. Cancer Res. 1976;36(7 PT 2):2690–8.Google Scholar
  13. 13.
    Kozuka S, Sassa R, Taki T, Masamoto K, Nagasawa S, Saga S, et al. Relation of pancreatic duct hyperplasia to carcinoma. Cancer. 1979;43(4):1418–28.CrossRefGoogle Scholar
  14. 14.
    Brentnall TA, Bronner MP, Byrd DR, Haggitt RC, Kimmey MB. Early diagnosis and treatment of pancreatic dysplasia in patients with a family history of pancreatic cancer. Ann Intern Med. 1999;131(4):247–55.CrossRefGoogle Scholar
  15. 15.
    Hruban RH, Takaori K, Klimstra DS, Adsay NV, Albores-Saavedra J, Biankin AV, et al. An illustrated consensus on the classification of pancreatic intraepithelial neoplasia and intraductal papillary mucinous neoplasms. Am J Surg Pathol. 2004;28(8):977–87.CrossRefGoogle Scholar
  16. 16.
    Winter JM, Cameron JL, Lillemoe KD, Campbell KA, Chang D, Riall TS, et al. Periampullary and pancreatic incidentaloma: a single institution’s experience with an increasingly common diagnosis. Ann Surg. 2006;243(5):673–80. discussion 80-3CrossRefGoogle Scholar
  17. 17.
    Salvia R, Fernandez-del Castillo C, Bassi C, Thayer SP, Falconi M, Mantovani W, et al. Main-duct intraductal papillary mucinous neoplasms of the pancreas: clinical predictors of malignancy and long-term survival following resection. Ann Surg. 2004;239(5):678–85. discussion 85-7CrossRefGoogle Scholar
  18. 18.
    Basturk O, Hong SM, Wood LD, Adsay NV, Albores-Saavedra J, Biankin AV, et al. A revised classification system and recommendations from the Baltimore consensus meeting for neoplastic precursor lesions in the pancreas. Am J Surg Pathol. 2015;39(12):1730–41.CrossRefGoogle Scholar
  19. 19.
    Iacobuzio-Donahue CA, Klimstra DS, Adsay NV, Wilentz RE, Argani P, Sohn TA, et al. Dpc-4 protein is expressed in virtually all human intraductal papillary mucinous neoplasms of the pancreas: comparison with conventional ductal adenocarcinomas. Am J Pathol. 2000;157(3):755–61.CrossRefGoogle Scholar
  20. 20.
    Wilentz RE, Iacobuzio-Donahue CA, Argani P, McCarthy DM, Parsons JL, Yeo CJ, et al. Loss of expression of Dpc4 in pancreatic intraepithelial neoplasia: evidence that DPC4 inactivation occurs late in neoplastic progression. Cancer Res. 2000;60(7):2002–6.PubMedPubMedCentralGoogle Scholar
  21. 21.
    Valsangkar NP, Morales-Oyarvide V, Thayer SP, Ferrone CR, Wargo JA, Warshaw AL, et al. 851 resected cystic tumors of the pancreas: a 33-year experience at the Massachusetts General Hospital. Surgery. 2012;152(3 Suppl 1):S4–12.CrossRefGoogle Scholar
  22. 22.
    de Jong K, Nio CY, Mearadji B, Phoa SS, Engelbrecht MR, Dijkgraaf MG, et al. Disappointing interobserver agreement among radiologists for a classifying diagnosis of pancreatic cysts using magnetic resonance imaging. Pancreas. 2012;41(2):278–82.CrossRefGoogle Scholar
  23. 23.
    Wu J, Jiao Y, Dal Molin M, Maitra A, de Wilde RF, Wood LD, et al. Whole-exome sequencing of neoplastic cysts of the pancreas reveals recurrent mutations in components of ubiquitin-dependent pathways. Proc Natl Acad Sci U S A. 2011;108(52):21188–93.CrossRefGoogle Scholar
  24. 24.
    Wu J, Matthaei H, Maitra A, Dal Molin M, Wood LD, Eshleman JR, et al. Recurrent GNAS mutations define an unexpected pathway for pancreatic cyst development. Sci Transl Med. 2011;3(92):92ra66.CrossRefGoogle Scholar
  25. 25.
    Iacobuzio-Donahue CA, Wilentz RE, Argani P, Yeo CJ, Cameron JL, Kern SE, et al. Dpc4 protein in mucinous cystic neoplasms of the pancreas: frequent loss of expression in invasive carcinomas suggests a role in genetic progression. Am J Surg Pathol. 2000;24(11):1544–8.CrossRefGoogle Scholar
  26. 26.
    Terhune PG, Phifer DM, Tosteson TD, Longnecker DS. K-ras mutation in focal proliferative lesions of human pancreas. Cancer epidemiology, biomarkers and prevention: a publication of the American Association for Cancer Research, cosponsored by the Am Soc Prev Oncol. 1998;7(6):515–521.Google Scholar
  27. 27.
    Klein AP, Brune KA, Petersen GM, Goggins M, Tersmette AC, Offerhaus GJ, et al. Prospective risk of pancreatic cancer in familial pancreatic cancer kindreds. Cancer Res. 2004;64(7):2634–8.CrossRefGoogle Scholar
  28. 28.
    Roberts NJ, Jiao Y, Yu J, Kopelovich L, Petersen GM, Bondy ML, et al. ATM mutations in patients with hereditary pancreatic cancer. Cancer Discov. 2012;2(1):41–6.CrossRefGoogle Scholar
  29. 29.
    Hruban RH, Canto MI, Goggins M, Schulick R, Klein AP. Update on familial pancreatic cancer. Adv Surg. 2010;44:293–311.CrossRefGoogle Scholar
  30. 30.
    Goggins M, Offerhaus GJ, Hilgers W, Griffin CA, Shekher M, Tang D, et al. Pancreatic adenocarcinomas with DNA replication errors (RER+) are associated with wild-type K-ras and characteristic histopathology. Poor differentiation, a syncytial growth pattern, and pushing borders suggest RER+. Am J Pathol. 1998;152(6):1501–7.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Brune K, Hong SM, Li A, Yachida S, Abe T, Griffith M, et al. Genetic and epigenetic alterations of familial pancreatic cancers. Cancer Epidemiol Biomark Prev. 2008;17(12):3536–42.CrossRefGoogle Scholar
  32. 32.
    Norris AL, Roberts NJ, Jones S, Wheelan SJ, Papadopoulos N, Vogelstein B, et al. Familial and sporadic pancreatic cancer share the same molecular pathogenesis. Familial Cancer. 2014;14:95–103.CrossRefGoogle Scholar
  33. 33.
    Bailey P, Chang DK, Nones K, Johns AL, Patch AM, Gingras MC, et al. Genomic analyses identify molecular subtypes of pancreatic cancer. Nature. 2016;531(7592):47–52.CrossRefGoogle Scholar
  34. 34.
    Pannala R, Leirness JB, Bamlet WR, Basu A, Petersen GM, Chari ST. Prevalence and clinical profile of pancreatic cancer-associated diabetes mellitus. Gastroenterology. 2008;134(4):981–7.CrossRefGoogle Scholar
  35. 35.
    Chari ST, Leibson CL, Rabe KG, Timmons LJ, Ransom J, de Andrade M, et al. Pancreatic cancer-associated diabetes mellitus: prevalence and temporal association with diagnosis of cancer. Gastroenterology. 2008;134(1):95–101.CrossRefGoogle Scholar
  36. 36.
    Pelaez-Luna M, Takahashi N, Fletcher JG, Chari ST. Resectability of presymptomatic pancreatic cancer and its relationship to onset of diabetes: a retrospective review of CT scans and fasting glucose values prior to diagnosis. Am J Gastroenterol. 2007;102(10):2157–63.CrossRefGoogle Scholar
  37. 37.
    Patel AV, Rodriguez C, Bernstein L, Chao A, Thun MJ, Calle EE. Obesity, recreational physical activity, and risk of pancreatic cancer in a large US cohort. Cancer Epidemiol Biomark Prev. 2005;14(2):459–66.CrossRefGoogle Scholar
  38. 38.
    Ghazale A, Chari ST, Smyrk TC, Levy MJ, Topazian MD, Takahashi N, et al. Value of serum IgG4 in the diagnosis of autoimmune pancreatitis and in distinguishing it from pancreatic cancer. Am J Gastroenterol. 2007;102(8):1646–53.CrossRefGoogle Scholar
  39. 39.
    Lowenfels AB, Maisonneuve P, Cavallini G, Ammann RW, Lankisch PG, Andersen JR, et al. Pancreatitis and the risk of pancreatic cancer. International Pancreatitis Study Group. N Engl J Med. 1993;328(20):1433–7.CrossRefGoogle Scholar
  40. 40.
    Eshleman JR, Norris AL, Sadakari Y, Debeljak M, Borges M, Harrington C, et al. KRAS and guanine nucleotide-binding protein mutations in pancreatic juice collected from the duodenum of patients at high risk for neoplasia undergoing endoscopic ultrasound. Clin Gastroenterol Hepatol: Off Clin Pract J Am Gastroenterol Assoc. 2015;13(5):963–9. e4CrossRefGoogle Scholar
  41. 41.
    Leeflang MM, Deeks JJ, Gatsonis C, Bossuyt PM. Cochrane diagnostic test accuracy working G. Systematic reviews of diagnostic test accuracy. Ann Intern Med. 2008;149(12):889–97.CrossRefGoogle Scholar
  42. 42.
    Koopmann J, Buckhaults P, Brown DA, Zahurak ML, Sato N, Fukushima N, et al. Serum macrophage inhibitory cytokine 1 as a marker of pancreatic and other periampullary cancers. Clin Cancer Res. 2004;10(7):2386–92.CrossRefGoogle Scholar
  43. 43.
    Hori SS, Gambhir SS. Mathematical model identifies blood biomarker-based early cancer detection strategies and limitations. Sci Transl Med. 2011;3(109):109ra16.CrossRefGoogle Scholar
  44. 44.
    Koprowski H, Steplewski Z, Mitchell K, Herlyn M, Herlyn D, Fuhrer P. Colorectal carcinoma antigens detected by hybridoma antibodies. Somatic Cell Genet. 1979;5(6):957–71.CrossRefGoogle Scholar
  45. 45.
    Duffy MJ. CA 19-9 as a marker for gastrointestinal cancers: a review. Ann Clin Biochem. 1998;35(Pt 3):364–70.CrossRefGoogle Scholar
  46. 46.
    Steinberg W. The clinical utility of the CA 19-9 tumor-associated antigen. Am J Gastroenterol. 1990;85(4):350–5.PubMedGoogle Scholar
  47. 47.
    DiMagno EP, Reber HA, Tempero MA. AGA technical review on the epidemiology, diagnosis, and treatment of pancreatic ductal adenocarcinoma. Am Gastroenterol Assoc Gastroenterol. 1999;117(6):1464–84.Google Scholar
  48. 48.
    Locker GY, Hamilton S, Harris J, Jessup JM, Kemeny N, Macdonald JS, et al. ASCO 2006 update of recommendations for the use of tumor markers in gastrointestinal cancer. J Clin Oncol. 2006;24(33):5313–27.CrossRefGoogle Scholar
  49. 49.
    Nolen BM, Brand RE, Prosser D, Velikokhatnaya L, Allen PJ, Zeh HJ, et al. Prediagnostic serum biomarkers as early detection tools for pancreatic cancer in a large prospective cohort study. PLoS One. 2014;9(4):e94928.CrossRefGoogle Scholar
  50. 50.
    O’Brien DP, Sandanayake NS, Jenkinson C, Gentry-Maharaj A, Apostolidou S, Fourkala EO, et al. Serum CA19-9 is significantly upregulated up to 2 years before diagnosis with pancreatic cancer: implications for early disease detection. Clin Cancer Res: Off J Am Assoc Cancer Res. 2015;21(3):622–31.CrossRefGoogle Scholar
  51. 51.
    Koopmann J, Rosenzweig CN, Zhang Z, Canto MI, Brown DA, Hunter M, et al. Serum markers in patients with resectable pancreatic adenocarcinoma: macrophage inhibitory cytokine 1 versus CA19-9. Clin Cancer Res. 2006;12(2):442–6.CrossRefGoogle Scholar
  52. 52.
    Brand RE, Nolen BM, Zeh HJ, Allen PJ, Eloubeidi MA, Goldberg M, et al. Serum biomarker panels for the detection of pancreatic cancer. Clin Cancer Res: Off J Am Assoc Cancer Res. 2011;17(4):805–16.CrossRefGoogle Scholar
  53. 53.
    Gerdtsson AS, Wingren C, Persson H, Delfani P, Nordstrom M, Ren H, et al. Plasma protein profiling in a stage defined pancreatic cancer cohort – implications for early diagnosis. Mol Oncol. 2016;10(8):1305–16.CrossRefGoogle Scholar
  54. 54.
    Radon TP, Massat NJ, Jones R, Alrawashdeh W, Dumartin L, Ennis D, et al. Identification of a three-biomarker panel in urine for early detection of pancreatic adenocarcinoma. Clin Cancer Res: Off J Am Assoc Cancer Res. 2015;21(15):3512–21.CrossRefGoogle Scholar
  55. 55.
    Bettegowda C, Sausen M, Leary RJ, Kinde I, Wang Y, Agrawal N, et al. Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci Transl Med. 2014;6(224):224ra24. PMC4017867CrossRefGoogle Scholar
  56. 56.
    Kinde I, Wu J, Papadopoulos N, Kinzler KW, Vogelstein B. Detection and quantification of rare mutations with massively parallel sequencing. Proc Natl Acad Sci U S A. 2011;108(23):9530–5.CrossRefGoogle Scholar
  57. 57.
    Kinugasa H, Nouso K, Miyahara K, Morimoto Y, Dohi C, Tsutsumi K, et al. Detection of K-ras gene mutation by liquid biopsy in patients with pancreatic cancer. Cancer. 2015;121(13):2271–80.CrossRefGoogle Scholar
  58. 58.
    Sausen M, Phallen J, Adleff V, Jones S, Leary RJ, Barrett MT, et al. Clinical implications of genomic alterations in the tumour and circulation of pancreatic cancer patients. Nat Commun. 2015;6:7686.CrossRefGoogle Scholar
  59. 59.
    Berger AW, Schwerdel D, Costa IG, Hackert T, Strobel O, Lam S, et al. Detection of hot-spot mutations in circulating cell-free DNA from patients with intraductal papillary mucinous neoplasms of the pancreas. Gastroenterology. 2016;151(2):267–70.CrossRefGoogle Scholar
  60. 60.
    Bertotti A, Papp E, Jones S, Adleff V, Anagnostou V, Lupo B, et al. The genomic landscape of response to EGFR blockade in colorectal cancer. Nature. 2015;526(7572):263–7.CrossRefGoogle Scholar
  61. 61.
    Racila E, Euhus D, Weiss AJ, Rao C, McConnell J, Terstappen LW, et al. Detection and characterization of carcinoma cells in the blood. Proc Natl Acad Sci U S A. 1998;95(8):4589–94.CrossRefGoogle Scholar
  62. 62.
    Poruk KE, Blackford AL, Weiss MJ, Cameron JL, He J, Goggins MG, et al. Circulating tumor cells expressing markers of tumor initiating cells predict poor survival and cancer recurrence in patients with pancreatic ductal adenocarcinoma. Clin Cancer Res:Off J Am Assoc Cancer Res. Gut. 2017:epub 2017/03/16.Google Scholar
  63. 63.
    Rhim AD, Thege FI, Santana SM, Lannin TB, Saha TN, Tsai S, et al. Detection of circulating pancreas epithelial cells in patients with pancreatic cystic lesions. Gastroenterology. 2014;146(3):647–51.CrossRefGoogle Scholar
  64. 64.
    Li A, Yu J, Kim H, Wolfgang CL, Canto MI, Hruban RH, et al. MicroRNA array analysis finds elevated serum miR-1290 accurately distinguishes patients with low-stage pancreatic cancer from healthy and disease controls. Clin Cancer Res: Off J Am Assoc Cancer Res. 2013;19(13):3600–10.CrossRefGoogle Scholar
  65. 65.
    Baraniskin A, Nopel-Dunnebacke S, Ahrens M, Jensen SG, Zollner H, Maghnouj A, et al. Circulating U2 small nuclear RNA fragments as a novel diagnostic biomarker for pancreatic and colorectal adenocarcinoma. Int J Cancer J Int du Cancer. 2013;132(2):E48–57.CrossRefGoogle Scholar
  66. 66.
    Melo SA, Luecke LB, Kahlert C, Fernandez AF, Gammon ST, Kaye J, et al. Glypican-1 identifies cancer exosomes and detects early pancreatic cancer. Nature. 2015;523(7559):177–82.CrossRefGoogle Scholar
  67. 67.
    de Jong K, Nio CY, Hermans JJ, Dijkgraaf MG, Gouma DJ, van Eijck CH, et al. High prevalence of pancreatic cysts detected by screening magnetic resonance imaging examinations. Clin Gastroenterol Hepatol: Off Clin Pract J Am Gastroenterol Assoc. 2010;8(9):806–11.CrossRefGoogle Scholar
  68. 68.
    Tanaka M, Fernandez-Del Castillo C, Adsay V, Chari S, Falconi M, Jang JY, et al. International consensus guidelines 2012 for the management of IPMN and MCN of the pancreas. Pancreatol: Off J Int Assoc Pancreatol (IAP) [et al.]. 2012;12(3):183–97.CrossRefGoogle Scholar
  69. 69.
    Crippa S, Bassi C, Salvia R, Malleo G, Marchegiani G, Rebours V, et al. Low progression of intraductal papillary mucinous neoplasms with worrisome features and high-risk stigmata undergoing non-operative management: a mid-term follow-up analysis. Gut. 2017;66(3):495–506.CrossRefGoogle Scholar
  70. 70.
    Mukewar S, de Pretis N, Aryal-Khanal A, Ahmed N, Sah R, Enders F, et al. Fukuoka criteria accurately predict risk for adverse outcomes during follow-up of pancreatic cysts presumed to be intraductal papillary mucinous neoplasms. Gut. 2016:epub 2016/07/07.Google Scholar
  71. 71.
    Nikiforova MN, Khalid A, Fasanella KE, McGrath KM, Brand RE, Chennat JS, et al. Integration of KRAS testing in the diagnosis of pancreatic cystic lesions: a clinical experience of 618 pancreatic cysts. Mod Pathol: Off J U S Can Acad Pathol, Inc. 2013;26(11):1478–87.CrossRefGoogle Scholar
  72. 72.
    Springer S, Wang Y, Molin MD, Masica DL, Jiao Y, Kinde I, et al. A combination of molecular markers and clinical features improve the classification of pancreatic cysts. Gastroenterology. 2015;4(15):01067-7.Google Scholar
  73. 73.
    Hata T, Dal Molin M, Suenaga M, Yu J, Pittman M, Weiss M, et al. Cyst fluid telomerase activity predicts the histologic grade of cystic neoplasms of the pancreas. Clin Cancer Res: Off J Am Assoc Cancer Res. 2016;22(20):5141–51.CrossRefGoogle Scholar
  74. 74.
    Jabbar KS, Verbeke C, Hyltander AG, Sjovall H, Hansson GC, Sadik R. Proteomic mucin profiling for the identification of cystic precursors of pancreatic cancer. J Natl Cancer Inst. 2014;106(2):djt439.CrossRefGoogle Scholar
  75. 75.
    Das KK, Xiao H, Geng X, Fernandez-Del-Castillo C, Morales-Oyarvide V, Daglilar E, et al. mAb Das-1 is specific for high-risk and malignant intraductal papillary mucinous neoplasm (IPMN). Gut. 2014;63(10):1626–34.CrossRefGoogle Scholar
  76. 76.
    Kanda M, Knight S, Topazian M, Syngal S, Farrell J, Lee J, et al. Mutant GNAS detected in duodenal collections of secretin-stimulated pancreatic juice indicates the presence or emergence of pancreatic cysts. Gut. 2013;62(7):1024–33.CrossRefGoogle Scholar
  77. 77.
    Kanda M, Sadakari Y, Borges M, Topazian M, Farrell J, Syngal S, et al. Mutant TP53 in duodenal samples of pancreatic juice from patients with pancreatic cancer or high-grade dysplasia. Clin Gastroenterol Hepatol: Off Clin Pract J Am Gastroenterol Assoc. 2013;11(6):719–30. e5CrossRefGoogle Scholar
  78. 78.
    Yu J, Sadakari Y, Shindo K, Suenaga M, Brant A, Almario JAN, et al. Digital next-generation sequencing identifies low-abundance mutations in pancreatic juice samples collected from the duodenum of patients with pancreatic cancer and intraductal papillary mucinous neoplasms. Gut. 2016:epub 2016/07/18.Google Scholar
  79. 79.
    Rowe SP, Macura KJ, Mena E, Blackford AL, Nadal R, Antonarakis ES, et al. PSMA-based [(18)F]DCFPyL PET/CT is superior to conventional imaging for lesion detection in patients with metastatic prostate cancer. Mol Imaging Biol: MIB:Off Publ Acad Mol Imaging. 2016;18(3):411–9.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Anne Macgregor-Das
    • 1
  • Michael Goggins
    • 1
    • 2
    • 3
  1. 1.Department of Pathology, The Sol Goldman Pancreatic Cancer Research CenterJohns Hopkins University School of MedicineBaltimoreUSA
  2. 2.Department of Medicine, The Sol Goldman Pancreatic Cancer Research CenterJohns Hopkins University School of MedicineBaltimoreUSA
  3. 3.Department of Oncology, The Sol Goldman Pancreatic Cancer Research CenterJohns Hopkins University School of MedicineBaltimoreUSA

Section editors and affiliations

  • James L. Abbruzzese
    • 1
  • Raul A. Urrutia
    • 2
  • John Neoptolemos
    • 3
  • Markus W. Büchler
    • 4
  • Thilo Hackert
    • 5
  1. 1.Duke University Medical CenterDurhamUSA
  2. 2.Mayo Clinic Cancer CenterMayo ClinicRochesterUSA
  3. 3.Division of Surgery and OncologyUniversity of LiverpoolLiverpoolUK
  4. 4.Department of General, Visceral and Transplantation SurgeryUniversity of HeidelbergHeidelbergGermany
  5. 5.Department of General, Visceral and Transplantation SurgeryUniversity of HeidelbergHeidelbergGermany

Personalised recommendations