Encyclopedia of Social Network Analysis and Mining

2018 Edition
| Editors: Reda Alhajj, Jon Rokne

Semantic Social Networks Analysis

  • Christophe Thovex
  • Bénédicte LeGrand
  • Ofelia Cervantes
  • J. Alfredo Sánchez
  • Francky Trichet
Reference work entry
DOI: https://doi.org/10.1007/978-1-4939-7131-2_381



Data Mining

Extracting implicit information and knowledge from numeric data

Graph Mining

Extracting implicit information and knowledge from graphs

Knowledge Engineering

Discipline studying, extracting, and managing knowledge implicitly defined within digital data structures


Social network analysis (see Definition section)

Social Capital

Knowledge and skills owned by employees (human capital) when shared in a collaborative context and defining a network of professional interactions


Semantic Web (see Historical background section)

Text Mining

Extracting implicit information and knowledge from text corpora


Social networks analysis (SNA) enables to figure out the position of people and communities within social networks, represented as social graphs. It defines a set of methods and measures, such as...

This is a preview of subscription content, log in to check access.


  1. Aimé X, Furst F, Kuntz P, Trichet F (2010) Prototypicality gradient and similarity measure: a semiotic-based approach dedicated to ontology personalization. J Intell Inf Manag 2(2):65–158. 2150–8194Google Scholar
  2. Barabasi A-L, Albert R (1999) Emergence of scaling in random networks. Sci Mag 286(5439):509–512MathSciNetzbMATHGoogle Scholar
  3. Berners-Lee T, Hendler J, Lassila O (2001) The semantic web. Sci Am Mag 284(5):34–43Google Scholar
  4. Brandes U (2001) A faster algorithm for betweenness centrality. J Math Sociol 25:163–177zbMATHCrossRefGoogle Scholar
  5. Brandes U, Fleischer D (2005) Centrality measures based on current flow. In: 22nd symposium theoretical aspects of computer science (STACS 05), Stuttgart, LNCS, vol 3404, Springer, pp 533–544Google Scholar
  6. Castillo E, Cervantes O, Vilariño D, Báez D, Sánchez A (2015a) UDLAP: Sentiment analysis using a graph based representation. In: Proceedings of the 9th international workshop on semantic evaluation (Sem Eval 2015), pages 556–560, Denver, 4–5 June 2015. 2015 Association for Computational LinguisticsGoogle Scholar
  7. Castillo E, Cervantes O, Vilariño D, Báez D (2015b) Author verification using a graph-based representation. Int J Comput Appl (0975–8887) 123(15):1–8Google Scholar
  8. Cervantes O, Gutiérrez F, Gutiérrez E, Sánchez A, Rizwan M, Wan W (2015). A recommendation engine based on social metrics. In: The 6th workshop on semantics for smarter cities collocated with the 14th international semantic web conference (ISWC2015) 11–12 Oct, Bethlehem (S4SC 2015)Google Scholar
  9. Chen L, Qi L (2011) Social opinion mining for supporting Buyer’s complex decision making: exploratory user study and algorithm comparison. Soc Netw Anal Min J 1(4):301–320. Journal by Springer MathSciNetCrossRefGoogle Scholar
  10. Erdos P, Rényi A (1959) On random graphs. Publ Math 6:290–297MathSciNetzbMATHGoogle Scholar
  11. Erétéo G (2011) Semantic social network analysis. PhD thesis, Laboratoire d’Informatique, Signaux et Systémes de Sophia-Antipolis (L3S, UMR6070 CNRS), Université de Nice Sophia-AntipolisGoogle Scholar
  12. Fortunato S (2010) Community detection in graphs. Phys Rep 486:75–174MathSciNetCrossRefGoogle Scholar
  13. Freeman LC (1977) A set of measures of centrality based on betweenness. Sociometry 40:35–41CrossRefGoogle Scholar
  14. Freeman LC, Bloomberg W, Koff SP, Sunshine MH, Fararo TJ (1960) Local community leadership. University College of Syracuse University, SyracuseGoogle Scholar
  15. Freeman LC, White DR, Romney AK (1989) Research methods in social network analysis. George Mason University Press, FairfaxGoogle Scholar
  16. Galam S (2008) Sociophysics: a review of galam models. Int J Mod Phys C 19(3):409–440zbMATHCrossRefGoogle Scholar
  17. Ganter B, Wille R (1998) Formal concept analysis: mathematical foundations, 1st edn. Springer, BerlinzbMATHGoogle Scholar
  18. Giugliano M (2009) Calcium waves in astrocyte networks: theory and experiments. Front Neurosci 3(2):160–161CrossRefGoogle Scholar
  19. Gruber TR (1993) A translation approach to portable ontology specifications. Knowl Acquis 5(2):199–220CrossRefGoogle Scholar
  20. Lassila O, Swick RR (1998) Resource description framework (RDF) model and syntax specification. Technical report, World Wide Web Consortium, CambridgeGoogle Scholar
  21. Melo C, Le Grand B, Aufaure M-A (2012) A conceptual approach to characterize dynamic communities in social networks: application to business process management. In: BPMS2 2012: 5th international workshop on business process management and social software, TallinGoogle Scholar
  22. Miramontes O, Luque B (2002) Dynamical small-world behavior in an epidemical model of mobile individuals. Physica 168–169:379–385zbMATHGoogle Scholar
  23. Moreno J (1934) Who shall survive? – (Trad. fr) Fondements de la sociométrie. PUF, Washington, DCGoogle Scholar
  24. Newman MEJ (2005) A measure of betweenness centrality based on random walks. Soc Netw 27(1):39–54CrossRefGoogle Scholar
  25. Pang B, Lee L (2008) Analysis mining opinion sentiment. J Found Trends Inf Retr 2:1–135CrossRefGoogle Scholar
  26. Pearson M, West P (2003) Drifting smoke rings: social network analysis and Markov processes in a longitudinal study of friendship groups and risk taking. Connect Bull Int Netw Soc Netw Anal 25(2):59–76Google Scholar
  27. Rada M, Dragomir R (2011) Graph based natural language processing and information Retrieval. Cambridge University Press, CambridgezbMATHGoogle Scholar
  28. Riadh TM, Le Grand B, Aufaure M-A, Soto M (2009) Conceptual and statistical footprints for social networks’ characterization. In: SNA-KDD ‘09: proceedings of the 3rd workshop on social network mining and analysis. ACM, Paris, pp 1–8Google Scholar
  29. Robertson SE, Sparck Jones K (1976) Relevance weighting of search terms. J Am Soc Inf Sci 27(3):129–146CrossRefGoogle Scholar
  30. Sánchez JA, Valdiviezo O (2011) Enhancing productivity through social computing. Book chapter. In: Papadopoulou P, Kanellis P, Martakos D (eds) Social computing theory and practice: interdisciplinary approaches. Information Science Reference, pp 133–153Google Scholar
  31. Sánchez JA, Arzamendi-Pétriz A., Valdiviezo O (2007) Induced tagging: promoting resource discovery and recommendation in digital libraries. In: Proceedings of the joint conference on digital libraries (JCDL 2007, Vancouver), pp 396–397Google Scholar
  32. Sánchez JA, Valdiviezo O, Aquino E, Paredes R (2008) REC: improving the utilization of digital collections by using induced tagging. Res Comput Sci 39:83–93Google Scholar
  33. Shimbel A (1953) Structural parameters of communication networks. Bull Math Biophys 15:501–507. Stress rateMathSciNetCrossRefGoogle Scholar
  34. Sowa JF (1976) Conceptual graphs for a data base interface. IBM J Res Dev 20(4):336–357MathSciNetzbMATHCrossRefGoogle Scholar
  35. Tajfel H, Billig M, Bundy R, Flament C (1971) Social categorization and intergroup behavior. Eur J Soc Psychol 1:149–178CrossRefGoogle Scholar
  36. Thovex C, Trichet F (2012) Semantic social networks analysis: towards a sociophysical knowledge analysis. Soc Netw Anal Min J 2(1):1–15. Journal by SpringerCrossRefGoogle Scholar
  37. Wang Z, Scaglione A, Thomas RJ (2010) Electrical cen-trality measures for electric power grid vulnerability analysis. In: IEEE (ed) Proceedings of the 49th IEEE conference on decision and control, CDC 2010, Atlanta, 15–17 Dec 2010, pp 5792–5797Google Scholar
  38. Zhuhadar L, Nasraoui O, Wyatt R, Yang R (2011) Visual knowledge representation of conceptual semantic networks. Soc Netw Anal Min J 3:219–299. Journal by SpringerCrossRefGoogle Scholar

Recommended Reading

  1. Memon N, Alhajj R (eds) (2010) From sociology to computing in social networks theory, foundations and applications. Lecture notes in social networks, vol 1. Springer, WienGoogle Scholar

Copyright information

© Springer Science+Business Media LLC, part of Springer Nature 2018

Authors and Affiliations

  • Christophe Thovex
    • 1
  • Bénédicte LeGrand
    • 2
  • Ofelia Cervantes
    • 1
  • J. Alfredo Sánchez
    • 1
  • Francky Trichet
    • 3
  1. 1.French-Mexican Laboratory of Informatics and Automatic Control (LAFMIA, UMI CNRS 3175)LyonFrance
  2. 2.Centre de Recherche en InformatiqueParisFrance
  3. 3.Laboratory of Computer Sciences (LINA, UMR CNRS 6241)University of NantesNantesFrance

Section editors and affiliations

  • Tansel Ozyer
    • 1
  • Ozgur Ulusoy
    • 2
  1. 1.TOBB Economics and Technology UniversityAnkaraTurkey
  2. 2.Bilkent UniversityAnkaraTurkey