Encyclopedia of Social Network Analysis and Mining

2018 Edition
| Editors: Reda Alhajj, Jon Rokne

Scaling Subgraph Matching Queries in Huge Networks

  • Matthias Brücheler
  • Andrea Pugliese
  • V. S. Subrahmanian
Reference work entry
DOI: https://doi.org/10.1007/978-1-4939-7131-2_374

Synonyms

Glossary

COSI

Cloud-Oriented Subgraph Identification

DOGMA

Disk-Oriented Graph Matching Algorithm

RDF

Resource Description Framework

SPARQL

SPARQL Protocol and RDF Query Language

Introduction

Both social network owners and social network users are interested in a variety of queries that involve subgraph matching. In addition, answering SPARQL queries in the Semantic Web’s RDF framework largely involves subgraph matching. For example, the GovTrack dataset ( 2013) tracks events in the US Congress. In Fig. 1, we see that Jeff Ryster sponsored Bill B0045 whose subject is Health Care. A user who is using such a database might wish to ask queries such as that shown in Fig. 2. This query asks for all amendments (? v1) sponsored by Carla Bunes to bill (? v2) on the subject of health care that were originally sponsored by a male person (? v3). The reader can readily see that when answering this query, we want to...
This is a preview of subscription content, log in to check access.

References

  1. Abadi DJ, Marcus A, Madden S, Hollenbach KJ (2007) Scalable semantic web data management using vertical partitioning. In: VLDB, Vienna, pp 411–422Google Scholar
  2. Blondel V, Guillaume J, Lambiotte R, Lefebvre E (2008) Fast unfolding of communities in large networks. J Stat Mech Theory Exp 2008:P10008CrossRefGoogle Scholar
  3. Borgatti SP, Everett MG, Freeman LC (2002) Ucinet for windows: software for social network analysis. Analytic Technologies, HarvardGoogle Scholar
  4. Broekstra J, Kampman A, van Harmelen F (2003) Sesame: an architecture for storing and querying RDF data and schema information. In: Fensel D, Hendler JA, Lieberman H, Wahlster W (eds) Spinning the semantic web. MIT Press, Cambridge, pp 197–222Google Scholar
  5. Brücheler M, Pugliese A, Subrahmanian VS (2009) DOGMA: a disk-oriented graph matching algorithm for RDF databases. In: ISWC, Chantilly, pp 97–113Google Scholar
  6. Brücheler M, Pugliese A, Subrahmanian VS (2010) COSI: cloud oriented subgraph identification in massive social networks. In: Memon N, Alhajj R (eds) ASONAM, Odense. IEEE Computer Society, pp 248–255Google Scholar
  7. Brücheler M, Pugliese A, Subrahmanian VS (2011a) Probabilistic subgraph matching on huge social networks. In: Alhajj R, Memon N, Ting I (eds) ASONAM, Kaohsiung. IEEE Computer Society, pp 271–278Google Scholar
  8. Brücheler M, Pugliese A, Subrahmanian VS (2011b) A budget-based algorithm for efficient subgraph matching on huge networks. In: Abiteboul S, Bohm K, Koch C, Tan K (eds) ICDE workshop proceedings, Hannover. IEEE Computer Society, pp 94–99Google Scholar
  9. Cheng J, Yu JX, Ding B, Yu PS, Wang H (2008) Fast graph pattern matching. In: ICDE conference, Cancun, pp 913–922Google Scholar
  10. Cheng J, Ke Y, Ng W (2009) Efficient query processing on graph databases. ACM Trans Database Syst 2(1–2):48Google Scholar
  11. Flickr (2013) http://www.flickr.com
  12. Giugno R, Shasha D (2002) Graphgrep: a fast and universal method for querying graphs. In: ICPR conference, Québec City, pp 112–115Google Scholar
  13. Goldman R, McHugh J, Widom J (1999) From semistructured data to XML: migrating the Lore data model and query language. In: Proceedings of the 2nd international workshop on the web and databases (WebDB’99), Philadelphia, pp 25–30Google Scholar
  14. GovTrack dataset (2013) http://www.govtrack.us
  15. Harth A, Decker S (2005) Optimized index structures for querying RDF from the web. In: Proceedings of the 3rd Latin American web congress, Buenos Aires, pp 71–80Google Scholar
  16. Harth A, Umbrich J, Hogan A, Decker S (2007) YARS2: a federated repository for querying graph structured data from the web. In: ISWC, Busan, pp 211–224Google Scholar
  17. Huisman M, Duijn MAV (2005) Software for social network analysis. In: Carrington PJ, Scott J, Wasserman S (eds) Models and methods in social network analysis. Cambridge University Press, Cambridge/New York, pp 270–316CrossRefGoogle Scholar
  18. JenaTDB (2013) http://jena.apache.org
  19. Karypis G, Kumar V (1999) A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J Sci Comput 20:359–392MathSciNetzbMATHCrossRefGoogle Scholar
  20. Ke Y, Cheng J, Yu JX (2010) Querying large graph databases. In: DASFAA conference, Tsukuba, pp 487–488Google Scholar
  21. Kiryakov A, Ognyanov D, Manov D (2005) OWLIM – a pragmatic semantic repository for OWL. In: WISE workshops, New York, pp 182–192Google Scholar
  22. Lee C, Park S, Lee D, Lee J, Jeong O, Lee S (2008) A comparison of ontology reasoning systems using query sequences. In: Proceedings of the 2nd international conference on ubiquitous information management and communication, Suwon. ACM, pp 543–546Google Scholar
  23. MahmoudiNasab H, Sakr S (2010) An experimental evaluation of relational RDF storage and querying techniques. In: DASFAA workshops, Tsukuba, pp 215–226Google Scholar
  24. Martín MS, Gutierrez C (2009) Representing, querying and transforming social networks with RDF/SPARQL. In: ESWC conference, Heraklion, pp 293–307Google Scholar
  25. Mislove A, Marcon M, Gummadi PK, Druschel P, Bhattacharjee B (2007) Measurement and analysis of online social networks. In: Internet measurement conference, San Diego, pp 29–42Google Scholar
  26. Natale RD, Ferro A, Giugno R, Mongiovì M, Pulvirenti A, Shasha D (2010) SING: subgraph search in non-homogeneous graphs. BMC Bioinform 11:96CrossRefGoogle Scholar
  27. Neumann T, Weikum G (2008) RDF-3X: a RISC-style engine for RDF. PVLDB 1(1):647–659Google Scholar
  28. Newman MEJ (2003) The structure and function of complex networks. SIAM Rev 45(2):167–256MathSciNetzbMATHCrossRefGoogle Scholar
  29. Nooy W, Mrvar A, Batagelj V (2005) Exploratory social network analysis with Pajek. Structural analysis in the social sciences, vol 27. Cambridge University Press, New YorkGoogle Scholar
  30. Pugliese A, Udrea O, Subrahmanian VS (2008) Scaling RDF with time. In: WWW, Beijing, pp 605–614Google Scholar
  31. Ronen R, Shmueli O (2009) Evaluating very large datalog queries on social networks. In: EDBT, Saint-Petersburg, pp 577–587Google Scholar
  32. Sakr S (2009) GraphREL: a decomposition-based and selectivity-aware relational framework for processing sub-graph queries. In: DASFAA conference, Brisbane, pp 123–137Google Scholar
  33. Sesame2 (2013) http://www.openrdf.org
  34. Sintek M, Kiesel M (2006) RDFBroker: a signature-based high-performance RDF store. In: ESWC, Budva, pp 363–377Google Scholar
  35. Stocker M, Seaborne A, Bernstein A, Kiefer C, Reynolds D (2008) SPARQL basic graph pattern optimization using selectivity estimation. In: Proceeding of the 17th international conference on World Wide Web, ACM, Beijing, pp 595–604Google Scholar
  36. The Lehigh University Benchmark (2013) http://swat.cse.lehigh.edu/projects/lubm
  37. Udrea O, Pugliese A, Subrahmanian VS (2007) GRIN: a graph based RDF index. In: AAAI, Vancouver, pp 1465–1470Google Scholar
  38. Wilkinson K, Sayers C, Kuno H, Reynolds D (2003) Efficient RDF storage and retrieval in Jena2. Proc SWDB 3:7–8Google Scholar
  39. Zhang S, Li S, Yang J (2009) GADDI: distance index based subgraph matching in biological networks. In: EDBT conference, Saint-Petersburg, pp 192–203Google Scholar
  40. Zhang S, Li S, Yang J (2010) SUMMA: subgraph matching in massive graphs. In: CIKM conference, Toronto, pp 1285–1288Google Scholar
  41. Zhu K, Zhang Y, Lin X, Zhu G, Wang W (2010) NOVA: a novel and efficient framework for finding subgraph isomorphism mappings in large graphs. In: DASFAA conference, Tsukuba, pp 140–154Google Scholar
  42. Zou L, Chen L, ßzsu MT (2009) Distancejoin: pattern match query in a large graph database. VLDB Conf 2(1):886–897Google Scholar

Copyright information

© Springer Science+Business Media LLC, part of Springer Nature 2018

Authors and Affiliations

  • Matthias Brücheler
    • 1
  • Andrea Pugliese
    • 2
  • V. S. Subrahmanian
    • 1
  1. 1.Computer Science DepartmentUniversity of MarylandCollege ParkUSA
  2. 2.DIMES DepartmentUniversity of CalabriaRendeItaly

Section editors and affiliations

  • V. S. Subrahmanian
    • 1
  • Jeffrey Chan
    • 2
  1. 1.University of MarylandCollege ParkUSA
  2. 2.RMIT (Royal Melbourne Institute of Technology)MelbourneAustralia