Encyclopedia of Social Network Analysis and Mining

2018 Edition
| Editors: Reda Alhajj, Jon Rokne

Tulip 5

  • David Auber
  • Daniel Archambault
  • Romain Bourqui
  • Maylis Delest
  • Jonathan Dubois
  • Antoine Lambert
  • Patrick Mary
  • Morgan Mathiaut
  • Guy Melançon
  • Bruno Pinaud
  • Benjamin Renoust
  • Jason Vallet
Reference work entry
DOI: https://doi.org/10.1007/978-1-4939-7131-2_315



Tulip is an information visualization framework dedicated to the analysis and visualization of relational data. Based on more than 15 years of research and development, Tulip is built on a suite of tools and techniques that can be used to address a large variety of domain-specific problems. With Tulip, we aim to provide Python and/or C++ developers a complete library, supporting the design of interactive information visualization applications for relational data that can be customized to address a wide range of visualization problems. In its current iteration, Tulip enables the development of algorithms, visual encodings, interaction techniques, data models, and domain-specific visualizations. This development pipeline makes the framework efficient for creating research prototypes as well as developing end-user applications. The recent addition of a complete...

This is a preview of subscription content, log in to check access.



The authors gratefully thank Ludwig Fiolka and Charles Huet for their efforts to make Tulip such a good software.


  1. Abello J, van Ham F, Krishnan N (2006) ASK-graphview: a large scale graph visualization system. IEEE Trans Vis Comput Graph 12(5):669–676CrossRefGoogle Scholar
  2. Adar E (2006) GUESS: a language and interface for graph exploration. In: CHI’06: proceedings of the SIGCHI conference on human factors in computing systems, pp 791–800. http://graphexploration.cond.org/Google Scholar
  3. Andrei O, Fernandez M, Kirchner H, Melançon G, Namet O, Pinaud B. PORGY: strategy-driven interactive transformation of graphs. In: Echahed R (ed) 6th international workshop on computing with terms and graphs (TERMGRAPH 2011), Saarbrücken. volume 48 of electronic proceedings in theoretical computer science (EPTCS), April 2011, pp 54–68CrossRefGoogle Scholar
  4. Archambault D, Munzner T, Auber D (2007a) Grouse: feature-based, steerable graph hierarchy exploration. In: Proceedings of Eurographics/IEEE VGTC symposium on visualization (EuroVis ‘07), pp 67–74Google Scholar
  5. Archambault D, Munzner T, Auber D (2007b) TopoLayout: multilevel graph layout by topological features. IEEE Trans Vis Comput Graph 13(2):305–317CrossRefGoogle Scholar
  6. Archambault D, Munzner T, Auber D (2008) GrouseFlocks: steerable exploration of graph hierarchy space. IEEE Trans Vis Comput Graph 14(4):900–913CrossRefGoogle Scholar
  7. Archambault D, Munzner T, Auber D (2009) TugGraph: path-preserving hierarchies for browsing proximity and paths in graphs. In: Proceedings of the 2nd IEEE Pacific visualization symposium, pp 113–121Google Scholar
  8. Auber D (2001) Tulip. In: Mutzel P, Jnger M, Leipert S (eds) 9th international symposium on graph drawing, GD 2001, volume 2265 of lecture notes in computer science. Springer, Vienna, pp 335–337Google Scholar
  9. Auber D (2002) Outils de visualisation de larges structures de données. Phd, University Bordeaux IGoogle Scholar
  10. Auber D (2003) Tulip : a huge graph visualization framework. In: Mutzel P, Jünger M (eds) Graph drawing software, mathematics and visualization. Springer Berlin Heidelberg, pp 105–126CrossRefGoogle Scholar
  11. Auber D, Jourdan F (2005) Interactive refinement of multi-scale network clusterings. In: IV ‘05: proceedings of the ninth international conference on information visualisation. IEEE Computer Society, Washington, pp 703–709Google Scholar
  12. Auber D, Mary P (2006) Mise en place dun mécanisme de plugins en c++. Programmation sous Linux 1(5):74–79Google Scholar
  13. Auber D, Chiricota Y, Jourdan F, Melanon G (2003) Multiscale navigation of small world networks. In: IEEE symposium on information visualisation. IEEE Computer Science Press, Seattle, pp 75–81Google Scholar
  14. Auber D, Delest M, Domenger J-P, Dulucq S (2006) Efficient drawing of rna secondary structure. J Graph Algorithms Appl 10(2):329–351MathSciNetzbMATHCrossRefGoogle Scholar
  15. Auber D, Novelli N, Melançon G (2007) Visually mining the datacube using a pixel-oriented technique. In: IV, pp 3–10Google Scholar
  16. Bastian M, Heymann S, Jacomy M et al (2009) Gephi: an open source software for exploring and manipulating networks. ICWSM 8:361–362Google Scholar
  17. Batagelj V, Mrvar A (2003) Pajek analysis and visualization of large networks. Graph Drawing Software 2265:77–103zbMATHGoogle Scholar
  18. Bostock M, Ogievetsky V, Heer J (2011) D3 data-driven documents. IEEE Trans Vis Comput Graph 17(12):2301–2309CrossRefGoogle Scholar
  19. Bourqui R, Auber D (2009) Large quasi-tree drawing: a neighborhood based approach. In: IV ‘09: proceedings of the 13 international conference on information visualisation (IV’09). IEEE Computer Society, Washington, pp 653–660Google Scholar
  20. Brin S, Page L (1998) The anatomy of a large-scale hypertextual web search engine. In: Seventh international World-Wide Web conference (WWW 1998)Google Scholar
  21. Busch A, Richter AS, Backofen R (2008) Intarna: efficient prediction of bacterial srna targets incorporating target site accessibility and seed regions. Bioinformatics 24(24):2849–2856CrossRefGoogle Scholar
  22. Chimani M, Gutwenger C, Jünger M, Klein K, Mutzel P, Schulz M (2007) The open graph drawing framework. In Posters of the 15th international symposium on graph drawing (GD’07). http://www.ogdf.net/ogdf.php/ogdf. Publications (visited 18 June 2016)
  23. Chiricota Y, Jourdan F, Melanon G (2003) Software components capture using graph clustering. In: 11th IEEE international workshop on program comprehension. IEEE / ACM, Portland, pp 217–226Google Scholar
  24. Dubois J, Ghozlane A, Thebault P, Dutour I, Bourqui R (2013) Genome-wide detection of sRNA targets with rNAV. In Symposium on biological data visualization, Atlanta, pp 81–88Google Scholar
  25. Ellson J, Gansner ER, Koutsofios E, North S, Woodhull G (2002) Graphviz-open source graph drawing tools. In: The 9th international symposium on graph drawing (GD’01), volume 2265 of LNCS, pp 483–484zbMATHGoogle Scholar
  26. Elmqvist N, Fekete J-D (2010) Hierarchical aggregation for information visualization: overview, techniques, and design guidelines. IEEE Trans Vis Comput Graph 16:439–454CrossRefGoogle Scholar
  27. Fekete J-D (2004) The infovis toolkit. In: The 10th IEEE symposium on information visualization (InfoVis ‘04), pp 167–174. http://ivtk.sourceforge.net/CrossRefGoogle Scholar
  28. Hachul S, Jünger M (2005) Drawing large graphs with a potential-field-based multilevel algorithm. In: Pach J (ed) Graph drawing, volume 3383 of lecture notes in computer science. Springer, Berlin/Heidelberg, pp 285–295zbMATHCrossRefGoogle Scholar
  29. Hagberg AA, Schult DA, Swart PJ (2008) Exploring network structure, dynamics, and function using NetworkX. In Proceedings of the 7th python in science conference (SciPy2008), Pasadena, pp 11–15Google Scholar
  30. Heer J, Card SK, Landay JA (2005) Prefuse: a toolkit for interactive information visualization. In: CHI’05: proceedings of the SIGCHI conference on human factors in computing systems, pp 421–430. http://prefuse.org/Google Scholar
  31. Huang DW, Sherman BT, Lempicki RA (2008) Systematic and integrative analysis of large gene lists using David bioinformatics resources. Nat Protoc 4:44–57CrossRefGoogle Scholar
  32. Kohonen T (1982) Self-organized formation of topologically correct feature maps. Biol Cybern 43:59–69MathSciNetzbMATHCrossRefGoogle Scholar
  33. Leskovec J, Sosič R (2014) SNAP: a general purpose network analysis and graph mining library in C++. http://snap.stanford.edu/snap, June 2014
  34. Matthew O, Ward GG, Keim D (2015) Interactive data visualization: foundations, techniques and applications. A.K. Peters/CRC Press. Natick, MA, USAGoogle Scholar
  35. Mehlhorn K, Näher S (1995) LEDA: a platform for combinatorial and geometric computing. Commun ACM 38(1):96–102zbMATHCrossRefGoogle Scholar
  36. Moscovich T, Chevalier F, Henry N, Pietriga E, Fekete JD (2009) Topology-aware navigation in large networks. In: SIGCHI conference on human factors in computing systems, pp 2319–2328Google Scholar
  37. Munzner T (2009) A nested process model for visualization design and validation. IEEE Trans Vis Comput Graph 15(6):921–928CrossRefGoogle Scholar
  38. Munzner T, Guimbretiére F, Tasiran S, Zhang L, Zhou Y (2003) TreeJuxtaposer: scalable tree comparison using focus+context with guaranteed visibility. Proceedings SIGGRAPH 2003. ACM Trans Graph, 22(3):453–462,CrossRefGoogle Scholar
  39. Mutzel P, Gutwenger C, Brockenauer R, Fialko S, Klau G, Krüger M, Ziegler T, Näher S, Alberts D, Ambras D, Koch G, Jünger M, Buchheim C, Leipert S (1998) A library of algorithms for graph drawing. In: The 6th international symposium on graph drawing (GD’98), volume 1547 of LNCS, pp 456–457Google Scholar
  40. Noack A (2003) An energy model for visual graph clustering. In: Graph drawing. Springer Berlin Heidelberg, pp 425–436Google Scholar
  41. Pearson WR, Lipman DJ (1988) Improved tools for biological sequence comparison. Proceedings of the National Academy of Sciences of the United States of America, 85(8):2444–2448, April 1988CrossRefGoogle Scholar
  42. Pinaud B, Melançon G, Dubois J (2012) PORGY: a visual graph rewriting environment for complex systems. Comput Graph Forum 31(3):1265–1274CrossRefGoogle Scholar
  43. Raitner M (2002) Hgv: a library for hierarchies, graphs, and views. In: 10th international symposium on graph drawing, GD 2002, pp 236–243Google Scholar
  44. Renoust B, Melancon G, Munzner T (2015) Detangler: visual analytics for multiplex networks. Comput Graph Forum 34(3):321–330CrossRefGoogle Scholar
  45. Rozenblat C, Melanon G, Amiel M, Auber D, Discazeaux C, LHostis A, Langlois P, Larribe S (2000) Worldwide multi-level networks of cities emerging from air traffic. In: International geographical union IGU 2006 cities of tomorrow, 2006, Santiago de CompostelaGoogle Scholar
  46. Schroeder W, Martin K, Lorensen B (2006) The Visualization Toolkit An ObjectOriented Approach To 3D Graphics, 4th edn. Kitware, Inc, Clifton ParkGoogle Scholar
  47. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13(11):2498–2504CrossRefGoogle Scholar
  48. Shneiderman B (1996) The eyes have it: a task by data type taxonomy for information visualizations. In: VL’96: proceedings of the 1996 I.E. symposium on visual languages, pp 336–344CrossRefGoogle Scholar
  49. Thebault P, Bourqui R, William B, Gaspin C, Sirand-Pugnet P, Uricaru R, Dutour I (2014) Advantages of mixing bioinformatics and visualization approaches for analyzing sRNA-mediated regulatory bacterial networks. Brief Bioinform: 16(5):1–11CrossRefGoogle Scholar
  50. Tominskia C, Abello J, Schumann H (2009) CGV – an interactive graph visualization system. Comput Graph 33(6):660–678CrossRefGoogle Scholar
  51. Vallet J, Kirchner H, Pinaud B, Melançon G (2015) A visual analytics approach to compare propagation models in social networks. In: Rensink A, Zambon E (eds) Graphs as models, London, Apr 2015, vol 181. arXiv:1504.02448MathSciNetCrossRefGoogle Scholar
  52. Vincent D, Blondel J-LG, Lambiotte R, Lefebvre E (2008) Fast unfolding of communities in large networks. J Statis Mech: Theory Exp 2008(10):P10008CrossRefGoogle Scholar
  53. Wylie B, Baumes J (2009) A unified toolkit for information and scientific visualization. Vis Data Anal 7243(1):72430HGoogle Scholar

Copyright information

© Springer Science+Business Media LLC, part of Springer Nature 2018

Authors and Affiliations

  • David Auber
    • 1
  • Daniel Archambault
    • 4
  • Romain Bourqui
    • 1
  • Maylis Delest
    • 1
  • Jonathan Dubois
    • 1
  • Antoine Lambert
    • 2
  • Patrick Mary
    • 1
  • Morgan Mathiaut
    • 1
  • Guy Melançon
    • 1
  • Bruno Pinaud
    • 1
  • Benjamin Renoust
    • 3
  • Jason Vallet
    • 1
  1. 1.CNRS UMR 5800 LaBRIUniversity of BordeauxTalenceFrance
  2. 2.Inria Centre de recherche de ParisParisFrance
  3. 3.Digital Content and Media Sciences ResearchNational Institute of Informatics and CNRS UMI 3527 JFLITokyoJapan
  4. 4.Department of Computer ScienceSwansea UniversitySwanseaUK

Section editors and affiliations

  • Vladimir Batagelj
    • 1
  1. 1.Department of MathematicsUniversity of LjubljanaLjubljanaSlovenia