Encyclopedia of Social Network Analysis and Mining

2018 Edition
| Editors: Reda Alhajj, Jon Rokne

Economic Network Analysis Based on Infection Models

  • M. Krész
  • A. Pluhár
Reference work entry
DOI: https://doi.org/10.1007/978-1-4939-7131-2_29



(Strong) Component

maximal set of vertices that are reachable from each other by (directed) paths


a class of a partition of vertices.


a dense part of a graph (possibly overlapping)

Host graph

the vertices are companies; the edges represent either money transfer or other types of connections

Intersection graph

the vertices correspond to sets, and edges are drawn if the sets intersect

Transaction graph

edges represent some transaction (call, money flow, etc.) among vertices (clients)


Infection Models

There are several types of models depending on the specialty of the field; for a brief introduction, see Chapter 7 of Jackson (2010). The type of events (default, churn, fraud, route of development) does not involve recovery or resistance, so simple percolation models suffice.

SI Models

For all the applications listed in this...

This is a preview of subscription content, log in to check access.



This research was partially supported by National Research, Development and Innovation Office – NKFIH Fund No. SNN-117879.


  1. Adamcsek B et al (2006) CFinder: locating cliques and overlapping modules in biological networks. Bioinformatics 22:1021–1023CrossRefGoogle Scholar
  2. Asur S et al (2009) An event-based framework for characterizing the evolutionary behavior of interaction graphs. ACM Trans Knowl Discov Data 3(4):16–36CrossRefGoogle Scholar
  3. Bascompte J et al (2007) Plant-animal mutualistic networks: the architecture of biodiversity. Annu Rev Ecol Evol Syst 38:567–593zbMATHCrossRefGoogle Scholar
  4. Bass F (1969) A new product growth model for consumer durables. Manag Sci 15:215–227zbMATHCrossRefGoogle Scholar
  5. Blondel VD et al (2008) Fast unfolding of communities in large networks. J Stat Mech: Theory Exp 10:P10008CrossRefGoogle Scholar
  6. Blume L (1993) The statistical mechanics of strategic interaction. Games Econ Behav 5:387–424MathSciNetzbMATHCrossRefGoogle Scholar
  7. Bóta A et al (2011a) Dynamic communities and their detection. Acta Cybernetica 20:35–52zbMATHCrossRefGoogle Scholar
  8. Bóta A et al (2011b) Systematic learning of edge probabilities in the Domingos-Richardson model. Int J Complex Syst Sci 1(2):115–118Google Scholar
  9. Bóta A et al (2012) Models for fully mapping the economic ties in Hungary before and during the recent crisis. In: Proceedings of crisis aftermath: economic policy changes in the EU and its member states, 8–9 Mar 2012Google Scholar
  10. Bóta A et al (2013) Approximations of the generalized cascade model. Acta Cybernetica 21:37–51MathSciNetzbMATHCrossRefGoogle Scholar
  11. Bóta A et al (2014) The inverse infection problem. In: Proceedings of the 2014 federated conference on computer science and information systems, IEEE Computer Society, pp 75–84.Google Scholar
  12. Bóta A et al (2015) Application of the inverse infection problem on bank transaction networks. CEJOR 23:345–356MathSciNetzbMATHCrossRefGoogle Scholar
  13. Bóta A et al (2016) Estimation of edge infection probabilities in the inverse infection problem. In: Fidanova S (ed) Recent advances in computational optimization. Studies on computational intelligence, vol 610. Springer, Heidelberg, pp 17–36CrossRefGoogle Scholar
  14. Bródka P et al (2013) GED: the method for group evolution discovery in social networks. Soc Netw Anal Min 3(1):1–14CrossRefGoogle Scholar
  15. Chen W et al (2010) Scalable influence maximization for prevalent viral marketing in large-scale social networks. In: Proceedings of the 16th ACM SIGKDD international conference on knowledge discovery and data mining. ACM, Washington, pp 1029–1038Google Scholar
  16. Coleman J et al (1966) Medical innovations: a diffusion study. Bobbs Merrill, IndianapolisGoogle Scholar
  17. Csernenszky A et al (2009) The use of infections models in accounting and crediting. In: Proceedings of the challenges for analysis of the economy, the business, and social progress, international scientific conference, Szeged, pp 617–623Google Scholar
  18. Csizmadia L et al (2010) Community detection and its use in real graphs. In: Proceedings of the 13th international multiconference INFORMATION SOCIETY_IS 2010, pp 393–396Google Scholar
  19. Domingos P, Richardson M (2001) Mining the network value of costumers. In: Proceedings of the seventh ACM SIGKDD international conference on knowledge discovery and data mining. ACM, New York, pp 57–66CrossRefGoogle Scholar
  20. Ellison G (1993) Learning, local interaction, and coordination. Econometrica 61(5):1047–1071MathSciNetzbMATHCrossRefGoogle Scholar
  21. Granovetter M (1973) The strength of weak ties. Am J Sociol 78(6):1360–1380CrossRefGoogle Scholar
  22. Granovetter M (1978) Threshold models of collective behavior. Am J Sociol 83(6):1420–1443CrossRefGoogle Scholar
  23. Griechisch E, Pluhár A (2011) Community detection by using the extended modularity. Acta Cybernetica 20:69–85zbMATHCrossRefGoogle Scholar
  24. Győrffy et al (2015) Direct marketing optimization using client relational graphs. Studia Univ Babes-Bolyai Informatica 59:137–149Google Scholar
  25. Haberly D, Wójcik D (2014) Regional blocks and imperial legacies: mapping the global offshore FDI network. Econ Geogr 91:251–280CrossRefGoogle Scholar
  26. Hidalgo CA et al (2007) The product space conditions the development of nations. Science 317:482–487CrossRefGoogle Scholar
  27. Horvát E-Á et al (2012) One plus one makes three (for social networks). PLoS One 7(4):e34740.  https://doi.org/10.1371/journal.pone.0034740CrossRefGoogle Scholar
  28. Jackson MO (2010) Social and economic networks. Princeton University Press, PrincetonzbMATHGoogle Scholar
  29. Kempe D et al (2003) Maximizing the spread of influence through a social network. In: Proceedings of the ninth ACM SIGKDD international conference on knowledge discovery and data mining, ACM, pp 137–146Google Scholar
  30. Kivela M et al (2014) Multilayer networks. J Complex Networks 2(3):203–271CrossRefGoogle Scholar
  31. Merza A et al (2016) On the possible use of network science in the analysis of world trade. (in Hungarian) Közgazdasági Szemle (Econ Rev) LXIII(1):79–98Google Scholar
  32. Newman MEJ (2003) The structure and function of complex networks. SIAM Rev 45:167–256MathSciNetzbMATHCrossRefGoogle Scholar
  33. Palla G et al (2009) Social group dynamics in networks. In: Adaptive networks. Springer, Berlin/Heidelberg, pp 11–38CrossRefGoogle Scholar
  34. Srivastava A et al (2015) The unified model of social influence and its application in influence maximization. Soc Netw Anal Min 5(1):66:1–66:15CrossRefGoogle Scholar
  35. Tong G et al (2017) Adaptive influence maximization in dynamic social networks. IEEE/ACM Trans Networking 25(1):112–125CrossRefGoogle Scholar
  36. Uzzi B (1996) The sources and consequences of embeddedness for the economic performance of organizations: the network effect. Am Sociol Rev 61(4):674–698CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Applied SciencesUniversity of SzegedSzegedHungary
  2. 2.Institute of InformaticsUniversity of SzegedSzegedHungary

Section editors and affiliations

  • Fabrizio Silvestri
    • 1
  • Andrea Tagarelli
    • 2
  1. 1.Yahoo IncLondonUK
  2. 2.University of CalabriaArcavacata di RendeItaly