Encyclopedia of Social Network Analysis and Mining

2018 Edition
| Editors: Reda Alhajj, Jon Rokne

Social Communication Network: Case Study

  • Bin Liang
  • Bo Xu
  • Deqing Yang
  • Qi Liu
  • Yanghua Xiao
Reference work entry
DOI: https://doi.org/10.1007/978-1-4939-7131-2_289

Synonyms

Glossary

BC

Betweenness centrality

CC

Closeness centrality

DC

Degree centrality

IM

Instant messaging

SNA

Social network analysis

SP

Shortest path

Definition

Social network is formally defined as a set of social actors that are connected by one or more types of relations (Wasserman and Faust 1994). Social actors can be individuals, groups, organizations, and even any units that can be connected to other units such as web pages, blogs, emails, instant messages, families, journal articles, neighborhoods, classes, sectors within organizations, positions, or nations (Furht 2010).

Social communication network is one of the most important social networks. In a social communication network, social actors are mostly persons, and the relationship between them is established for the purpose of communication. In a social communication network, social actors use communication tools such as...

This is a preview of subscription content, log in to check access.

References

  1. Brin S, Page L (1998) The anatomy of a large-scale hypertextual web search engine. In: International conference on world wide web, vol 30. Elsevier Science Publishers, Amsterdam, pp 107–117Google Scholar
  2. Dong Z, Song G, Xie K, Wang J (2009) An experimental study of large-scale mobile social network. In: Proceedings of the 18th international conference on World wide web. ACM, pp 1175–1176Google Scholar
  3. Eagle N, Macy M, Claxton R (2010) Network diversity and economic development. Science 328(5981):1029–1031.  https://doi.org/10.1126/science.1186605MathSciNetCrossRefMATHGoogle Scholar
  4. Furht B (2010) Handbook of social network technologies and applications. Springer, New YorkCrossRefGoogle Scholar
  5. Granovetter M (1973) The strength of weak ties. Am J Sociol 78(6):1360–1380CrossRefGoogle Scholar
  6. Granovetter M (1983) The strength of weak ties: a network theory revisited. In: Sociological theory. Wiley, New Jersey, pp 201–233Google Scholar
  7. Hu X, Tang J, Zhang Y, Liu H (2013) Social spammer detection in microblogging. Int J Confer Artif Intell 433–435:2633–2639Google Scholar
  8. Hu X, Tang J, Liu H (2014) Leveraging knowledge across media for spammer detection in microblogging. In Proceedings of the 37th international ACM SIGIR conference on Research & development in information retrieval. ACM, pp 547–556Google Scholar
  9. Leskovec J, Horvitz E (2008) Planetary-scale views on a large instant-messaging network. In: Proceedings of the 17th international conference on World Wide Web, WWW ‘08, Beijing, China. ACM, New York, pp 915–924Google Scholar
  10. Magnien C, Latapy M, Habib M (2009) Fast computation of empirically tight bounds for the diameter of massive graphs. J Exp Algorithm 13:10:1.10–110:1.9MathSciNetMATHCrossRefGoogle Scholar
  11. Myers SA, Zhu C, Leskovec J (2012) Information diffusion and external influence in networks. In: ACM SIGKDD international conference on knowledge discovery and data mining pp 33–41Google Scholar
  12. Nanavati AA, Gurumurthy S, Das G, Chakraborty D, Dasgupta K, Mukherjea S, Joshi A (2006) On the structural properties of massive telecom call graphs: findings and implications. In: Proceedings of the 15th ACM international conference on Information and knowledge management, CIKM ’06. ACM, New York, pp 435–444Google Scholar
  13. Newman MEJ (2002) Assortative mixing in networks. Phys Rev Lett 89(20):208701CrossRefGoogle Scholar
  14. Newman M, Forrest S, Balthrop J (2002) Email networks and the spread of computer viruses. Phys Rev E 66(3):035101CrossRefGoogle Scholar
  15. Onnela JP, Saramaki J, Hyvonen J, Szab G, de Menezes MA, Kaski K, Barabsi AL, Kertsz J (2007) Analysis of a large-scale weighted network of one-to-one human communication. New J Phys 9(6):179CrossRefGoogle Scholar
  16. Pastor-Satorras R, Vazquez A, Vespignani A (2001) Dynamical and correlation properties of the internet. Phys Rev Lett 87(25):258701CrossRefGoogle Scholar
  17. Saramaki J, pekkaOnnela J (2007) Structure and tie strengths in mobile communication networks. Proc Natl Acad Sci 104(18):7332–7336CrossRefGoogle Scholar
  18. Seshadri M, Machiraju S, Sridharan A, Bolot J, Faloutsos C, Leskove J (2008) Mobile call graphs: beyond power-law and lognormal distributions. In: Proceedings of the 14th ACM SIGKDD international conference on knowledge discovery and data mining, Las Vegas, Nevada, USA, KDD ‘08. ACM, New York, pp 596–604Google Scholar
  19. Shannon C (2001) A mathematical theory of communication. ACM SIGMOBILE Mobile Comput Commun Rev 5(1):3–55MathSciNetCrossRefGoogle Scholar
  20. Wang C, Zhang Y, Chen X, Liu Z, Shi L, Chen G, Qiu F, Ying C, Lu W (2010) A behavior-based smsantispam system. IBM J Res Dev 54(6):3CrossRefGoogle Scholar
  21. Wasserman S, Faust K (1994) Social network analysis: methods and applications. Structural analysis in the social sciences. Cambridge University Press, CambridgeMATHCrossRefGoogle Scholar
  22. Weaver N, Paxson V, Staniford S, Cunningham R (2003) A taxonomy of computer worms. In: Proceedings of the 2003 ACM workshop on rapid malcode. Washington, DC, USA, ACM, pp 11–18Google Scholar
  23. Weng J, Lim EP, Jiang J, He Q (2010) TwitterRank: finding topic-sensitive influential twitterers. In: ACM international conference on web search and data mining, pp 261–270Google Scholar
  24. Xu Q, Xiang EW, Yang Q, Du J, Zhong J (2012) Sms spam detection using non-content features. IEEE Intell Syst 27(6):44–51CrossRefGoogle Scholar
  25. Zhang B, Zhao G, Feng Y, Zhang X, Jiang W, Dai J et al. (2017). Behavior analysis based SMS spammer detection in mobile communication networks. In: IEEE international conference on data science in cyberspace, pp 538–543Google Scholar
  26. Zou C, Towsley D, Gong W (2004) Email worm modeling and defense. In: Proceedings, 13th international conference on computer communications and networks, ICCCN 2004. Chicago, Illinois, IEEE, pp 409–414Google Scholar

Copyright information

© Springer Science+Business Media LLC, part of Springer Nature 2018

Authors and Affiliations

  • Bin Liang
    • 1
  • Bo Xu
    • 1
  • Deqing Yang
    • 2
  • Qi Liu
    • 1
  • Yanghua Xiao
    • 1
  1. 1.School of Computer ScienceFudan UniversityShanghaiChina
  2. 2.School of Data ScienceFudan UniversityShanghaiChina

Section editors and affiliations

  • Rosa M. Benito
    • 1
  • Juan Carlos Losada
    • 2
  1. 1.Universidad Politécnica de MadridMadridSpain
  2. 2.Universidad Politécnica de MadridMadridSpain