Skip to main content

Scale-Free Nature of Social Networks

  • Reference work entry
  • First Online:
Encyclopedia of Social Network Analysis and Mining

Synonyms

Complex networks; Network models; Scale-free distributions; Universal scaling

Glossary

Degree:

The degree of a node in a network is the number of edges or connections to that node

ER graph:

The network model in which edges are set between nodes with equal probabilities

Fat-tailed distributions:

Have tails that decay more slowly than exponentially. All power-law distributions are fat tailed, but not all fat-tailed distributions are power laws (e.g., the lognormal distribution is fat tailed but is not a power-law distribution)

Node degree distribution:

The distribution function P(k) that gives the probability that a node selected at random has exactly k edges

Power-law distribution:

Has a probability function of the form P(x) ~ x−a

Scale-freeness:

Feature of objects or laws that does not change if length scale is multiplied by a common factor; also known as scale invariance

SF network:

The network with power-law distribution of node degrees

Definition

The notion of...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 2,500.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aiello W, Chung F, Lu L (2002) Random evolution of massive graphs. In: Pardalos PM, Abello J, Resende MGC (eds) Handbook of massive data sets. Kluwer, Dordrecht, pp 97–122

    Chapter  MATH  Google Scholar 

  • Albert R, Jeong H, Barabasi A-L (1999) Diameter of the World Wide Web. Nature 401:130–131

    Article  Google Scholar 

  • Aleksiejuk A, Holyst JA, Stauffer D (2002) Ferromagnetic phase transition in Barabasi-Albert networks. Phys A 310:260–266

    Article  MATH  Google Scholar 

  • Bak P (1996) How nature works: the science of self-organized criticality. Copernicus, New York

    Book  MATH  Google Scholar 

  • Barabasi A-L (2002) Linked: the new science of networks. Perseus Books Group, Reading

    Google Scholar 

  • Barabasi A-L, Albert R (1999) Emergence of scaling in random networks. Science 286:509–512

    Article  MathSciNet  MATH  Google Scholar 

  • Cohen R, Erez K, ben Avraham D, Havlin S (2000) Resilience of the Internet to random breakdowns. Phys Rev Lett 85:4626

    Article  Google Scholar 

  • Cohen R, Erez K, ben Avraham D, Havlin S (2001) Breakdown of the Internet under intentional attack. Phys Rev Lett 86:3682

    Article  Google Scholar 

  • Colizza V, Barrat A, Barthelemy M, Valleron AJ, Vespignani A (2007) Modeling the worldwide spread of pandemic influenza: baseline case and containment interventions. PLoS Med 4:e13

    Article  Google Scholar 

  • Ebel H, Mielsch LI, Bornholdt S (2002) Scale-free topology of e-mail networks. Phys Rev E 66:035103

    Article  Google Scholar 

  • Erdos P, Renyi A (1960) On the evolution of random graphs. Pub Math Inst Hung Acad Sci 5:17–61

    MathSciNet  MATH  Google Scholar 

  • Goh K-I, Kahng B, Kim D (2001) Universal behaviour of load distribution in scale-free networks. Phys Rev Lett 87:278701

    Article  Google Scholar 

  • Gonzalez MC, Hidalgo CA, Barabasi AL (2008) Understanding individual human mobility patterns. Nature 453:779–782

    Article  Google Scholar 

  • Guimera R, Nunes Amaral LA (2005) Functional cartography of complex metabolic networks. Nature 433(7028):895–900

    Article  Google Scholar 

  • Guimerà R, Mossa S, Turtschi A, Amaral LAN (2005) The worldwide air transportation network: anomalous centrality, community structure, and cities’ global roles. Proc Natl Acad Sci 102:7794–7799

    Article  MathSciNet  MATH  Google Scholar 

  • Helbing D, Armbruster D, Mikhailov AS, Lefeber E (2006) Information and material flows in complex networks. Physica A 363:11–16

    Google Scholar 

  • Huberman BA, Romero DM, Wu F (2009) Social networks that matter: twitter under the microscope. First Monday 14:1–5

    Google Scholar 

  • Liljeros F, Edling CR, Amaral LAN, Stanley HE, Aberg Y (2001) The web of human sexual contacts. Nature 411:907–908

    Article  Google Scholar 

  • Montoya J, Pimm SL, Solé RV (2006) Ecological networks and their fragility. Nature 442(7100):259–264

    Article  Google Scholar 

  • Newman ME, Watts DJ, Strogatz SH (2002) Random graph models of social networks. Proc Natl Acad Sci U S A 99(Suppl 1):2566–2572

    Article  MATH  Google Scholar 

  • Park J, Newman MEJ (2004) Statistical mechanics of networks. Phys Rev E 70:066117

    Article  MathSciNet  Google Scholar 

  • Pastor-Satorras R, Vespignani A (2001) Epidemic spreading in scale-free networks. Phys Rev Lett 86:3200

    Article  Google Scholar 

  • Pastor-Satorras R, Vespignani A (2002) Immunization of complex networks. Phys Rev E 65:036104

    Article  Google Scholar 

  • Price DJ d S (1965) Networks of scientific papers. Science 149:510–515

    Article  Google Scholar 

  • Redner S (1998) How popular is your paper? An empirical study of the citation distribution. Eur Phys J B 4:131–134

    Article  Google Scholar 

  • Valverde S, Ferrer Cancho R, Solé RV (2002) Scale-free networks from optimal design. Europhys Lett 60:512

    Article  Google Scholar 

  • Yeomans JM (2002) Statistical mechanics of phase transitions. Oxford University Press, New York

    MATH  Google Scholar 

  • Yule UG (1925) A mathematical theory of evolution, based on the conclusions of Dr. J. C. Willis, F.R.S. Philosophical transactions of the Royal Society of London. Series B, Containing Papers of a Biological Character, vol 213. The Royal Society, pp 21–87

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piotr Fronczak .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Fronczak, P. (2018). Scale-Free Nature of Social Networks. In: Alhajj, R., Rokne, J. (eds) Encyclopedia of Social Network Analysis and Mining. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-7131-2_248

Download citation

Publish with us

Policies and ethics