Encyclopedia of Social Network Analysis and Mining

2018 Edition
| Editors: Reda Alhajj, Jon Rokne

Ontology Matching

  • Pavel ShvaikoEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-1-4939-7131-2_123




Ontology alignment evaluation initiative


Ontology matching


The matching operation determines an alignment A′ for a pair of ontologies O1 and O2. Thus, given a pair of ontologies, which can be very simple and contain one entity each, the matching task is that of finding an alignment between these ontologies. There are some other parameters that can extend the definition of matching, namely, (i) the use of an input alignment A, which is to be extended or completed; (ii) the matching parameters, for instance, weights or thresholds; and (iii) external resources, such as common knowledge and domain-specific thesauri, see Fig. 1.
This is a preview of subscription content, log in to check access.


  1. Bellahsene Z, Bonifati A, Rahm E (eds) (2011) Schema matching and mapping. Springer, Berlin/Heidelberg/New YorkzbMATHGoogle Scholar
  2. Chang K (2009) Deep-web search. In: Liu L, Özsu MT (eds) Encyclopedia of database systems. Springer, New York/London, pp 784–788Google Scholar
  3. David J, Euzenat J, Scharffe F, Trojahn C (2011) The alignment API 4.0. Semant Web J 2(1):3–10Google Scholar
  4. Doan A, Halevy A (2005) Semantic integration research in the database community: a brief survey. AI Mag 26(1):83–94Google Scholar
  5. Euzenat J, Shvaiko P (2007) Ontology matching. Springer, Berlin/New YorkzbMATHGoogle Scholar
  6. Euzenat J, Meilicke C, Stuckenschmidt H, Shvaiko P, Trojahn C (2011) Ontology alignment evaluation initiative: six years of experience. J Data Semant XV:158–192CrossRefGoogle Scholar
  7. Gal A (2011) Uncertain schema matching. Morgan & Claypool, San RafaelzbMATHCrossRefGoogle Scholar
  8. Heath T, Bizer C (2011) Linked data: evolving the web into a global data space. Morgan & Claypool, San RafaelGoogle Scholar
  9. Isaac A, Wang S, Zinn C, Matthezing H, van der Meij L, Schlobach S (2009) Evaluating thesaurus alignments for semantic interoperability in the library domain. Int Underw Syst Des 24(2):76–86Google Scholar
  10. Melnik S (2004) Generic model management: concepts and algorithms. Springer, Berlin/New YorkzbMATHCrossRefGoogle Scholar
  11. Montanelli S, Bianchini D, Aiello C, Baldoni R, Bolchini C, Bonomi S, Castano S, Catarci T, Antonellis VD, Ferrara A, Melchiori M, Quintarelli E, Scannapieco M, Schreiber FA, Tanca L (2011) The ESTEEM platform: enabling p2p semantic collaboration through emerging collective knowledge. J Intell Inf Syst 36(2):167–195CrossRefGoogle Scholar
  12. Noy N, Klein M (2004) Ontology evolution: not the same as schema evolution. Knowl Inf Syst 6(4):428–440CrossRefGoogle Scholar
  13. Shvaiko P, Euzenat J (2005) A survey of schema-based matching approaches. J Data Semant IV:146–171zbMATHGoogle Scholar
  14. Shvaiko P, Euzenat J (2013) Ontology matching: state of the art and future challenges. Trans Knowl Data Eng 25(1):158–176CrossRefGoogle Scholar
  15. Shvaiko P, Giunchiglia F, Yatskevich M (2009) Semantic matching with S-match. In: Virgilio RD, Giunchiglia F, Tanca L (eds) Semantic web information management. Springer, Berlin/London, pp 183–202Google Scholar
  16. Vaccari L, Shvaiko P, Pane J, Besana P, Marchese M (2012) An evaluation of ontology matching in geoservice applications. GeoInformatica 16(1):31–66CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Informatica Trentina SpATrentoItaly

Section editors and affiliations

  • Thomas Gottron
    • 1
  • Stefan Schlobach
    • 2
  • Steffen Staab
    • 3
  1. 1.Institute for Web Science and TechnologiesUniversität Koblenz-LandauKoblenzGermany
  2. 2.YUAmsterdamThe Netherlands
  3. 3.Institute for Web Science and Technologies – WeSTUniversity of Koblenz-LandauKoblenzGermany