Encyclopedia of Social Network Analysis and Mining

2018 Edition
| Editors: Reda Alhajj, Jon Rokne

Recommender Systems, Semantic-Based

  • Fatih Gedikli
  • Dietmar Jannach
Reference work entry
DOI: https://doi.org/10.1007/978-1-4939-7131-2_116

Synonyms

Glossary

Cold start problem

The ramp-up phase of a recommender where preference data is missing

Collaborative filtering

A recommendation method which is based on rating information of the user community

Content-based filtering

A recommendation method which is based on the characteristics of the recommended items as well as individual user feedback

Hybrid recommender system

A recommender system that combines different recommendation approaches or data sources

Rating matrix

A grid containing the users’ implicit or explicit item rating

Definition

Recommender systems (RS) are software tools that are predominantly used on e-commerce sites and for other online services as a means to help the online customer find the most relevant shopping items or pieces of information quickly. Today, such systems can be found for a variety of different domains such as books, movies, music, hotels, restaurants, or...

This is a preview of subscription content, log in to check access.

References

  1. Cantador I, Bellogin A, Vallet D (2010) Content-based recommendation in social tagging systems. In: Rec-Sys’10, Barcelona, pp 237–240Google Scholar
  2. Covington P, Adams J, Sargin E (2016) Deep neural networks for YouTube recommendations. In: Proceedings of the 10th ACM conference on recommender systems. ACM, New YorkGoogle Scholar
  3. Di Noia T, Ostuni VC (2015) Recommender systems and linked open data. In: Reasoning web. Web logic rules: 11th international summer school 2015. Springer International Publishing, pp 88–113Google Scholar
  4. Dong R, O’Mahony MP, Schaal M, McCarthy K, Smyth B (2016) Combining similarity and sentiment in opinion mining for product recommendation. J Intell Inf Syst 46(2):285–312CrossRefGoogle Scholar
  5. Durao F, Dolog P (2010) Extending a hybrid tag-based recommender system with personalization. In: SAC’10, Sierre, pp 1723–1727Google Scholar
  6. Firan CS, Nejdl W, Paiu R (2007) The benefit of using tag-based profiles. In: LA-WEB’07, Santiago de Chile, pp 32–41Google Scholar
  7. Gabrilovich E, Markovitch S (2009) Wikipedia-based semantic interpretation for natural language processing. J Artif Intell Res (JAIR) 34:443–498zbMATHGoogle Scholar
  8. Gedikli F, Jannach D (2013) Improving recommendation accuracy based on item-specific tag preferences. ACM Trans Intell Syst Technol 4(1):1–19CrossRefGoogle Scholar
  9. Gedikli F, Ge M, Jannach D (2011) Understanding recommendations by reading the clouds. In: EC-Web’11, Toulouse, pp 196–208Google Scholar
  10. Gedikli F, Jannach D, Ge M (2014) How should I explain? A comparison of different explanation types for recommender systems. Int J Hum-Comput Stud 72(4):367–382. Elsevier BV, 2014CrossRefGoogle Scholar
  11. de Gemmis M, Lops P, Semeraro G, Basile P (2008) Integrating tags in a semantic content-based recommender. In: RecSys’08, Lausanne, pp 163–170Google Scholar
  12. de Gemmis M, Lops P, Musto C, Narducci F, Semeraro G (2015) Semantics-aware content-based recommender systems. In: Ricci et al. (ed) Recommender systems handbook, 2nd edn. Springer US, New York, NY, USA, pp 119–159Google Scholar
  13. Golder SA, Huberman BA (2006) Usage patterns of collaborative tagging systems. J Inf Sci 32(2):198–208CrossRefGoogle Scholar
  14. Hotho A, Jäschke R, Schmitz C, Stumme G (2006) Information retrieval in folksonomies: search and ranking. In: ESWC’06, Budva, pp 411–426Google Scholar
  15. Jannach D, Adomavicius G (2016) Recommendations with a purpose. In: Proceedings of the 10th ACM conference on Recommender Systems (RecSys 2016), Boston, pp 7–10Google Scholar
  16. Jannach D, Zanker M, Felfernig A, Friedrich G (2010) Recommender systems – an introduction. Cambridge University Press, LeidenCrossRefGoogle Scholar
  17. Ji A-T, Yeon C, Kim H-N, Jo G-S (2007) Collaborative tagging in recommender systems. In: AUS-AI’07, Gold Coast, pp 377–386Google Scholar
  18. Katz G, Ofek N, Shapira B, Rokach L, Shani G (2011) Using Wikipedia to boost collaborative filtering techniques. In: Proceedings of the fifth ACM conference on Recommender Systems (RecSys ’11). ACM, New York, pp 285–288CrossRefGoogle Scholar
  19. Kubatz M, Gedikli F, Jannach D (2011) LocalRank – neighborhood-based, fast computation of tag recommendations. In: EC-Web’11, Toulouse, pp 258–269Google Scholar
  20. Li X, Guo L, Zhao YE (2008) Tag-based social interest discovery. In: WWW’08, Beijing, pp 675–684Google Scholar
  21. Liang H, Xu Y, Li Y (2012) Mining users’ opinions based on item folksonomy and taxonomy for personalized recommender systems. In: ICDM’10, SydneyGoogle Scholar
  22. Linden G, Smith B, York J (2003) Amazon.com recommendations: item-to-item collaborative filtering. IEEE Internet Comput 7(1):76–80CrossRefGoogle Scholar
  23. Noll MG, Meinel C (2007) Web search personalization via social bookmarking and tagging. In: ISWC’07/ASWC’07, Busan, pp 367–380CrossRefGoogle Scholar
  24. van den Oord A, Dieleman, S., Schrauwen, B. (2013) Deep content-based music recommendation, Proceedings advances in Neural Information Processing Systems (NIPS), pp 2643–2651Google Scholar
  25. Ostuni VC, Di Noia T, Di Sciascio E, Mirizzi R (2013) Top-N recommendations from implicit feedback leveraging linked open data. In: Proceedings of the 7th ACM conference on Recommender systems (RecSys ’13). ACM, New York, pp 85–92Google Scholar
  26. Pitkow J, Schütze H, Cass T, Cooley R, Turnbull D, Edmonds A, Adar E, Breuel T (2002) Personalized search. Commun ACM 45(9):50–55CrossRefGoogle Scholar
  27. Rendle S, Schmidt-Thieme L (2010) Pairwise interaction tensor factorization for personalized tag recommendation. In: WSDM’10, New York, pp 81–90Google Scholar
  28. Rendle S, Balby Marinho L, Nanopoulos A, Lars S-T (2009) Learning optimal ranking with tensor factorization for tag recommendation. In: SIGKDD’09, Paris, pp 727–736Google Scholar
  29. Sen S, Vig J, Riedl JT (2009) Tagommenders: connecting users to items through tags. In: WWW’09, Madrid, pp 671–680Google Scholar
  30. Seth A, Zhang J (2008) A social network based approach to personalized recommendation of participatory media content. In: ICWSM’08, SeattleGoogle Scholar
  31. Shepitsen A, Gemmell J, Mobasher B, Burke R (2008) Personalized recommendation in social tagging systems using hierarchical clustering. In: RecSys’08, Lausanne, pp 259–266Google Scholar
  32. Symeonidis P, Nanopoulos A, Manolopoulos Y (2008) Tag recommendations based on tensor dimensionality reduction. In: RecSys’08, Lausanne, pp 43–50Google Scholar
  33. Tso-Sutter KHL, Marinho LB, Schmidt-Thieme L (2008) Tag-aware recommender systems by fusion of collaborative filtering algorithms. In: SAC’08, Fortaleza, pp 1995–1999Google Scholar
  34. Vatturi PK, Geyer W, Dugan C, Muller M, Brownholtz B (2008) Tag-based filtering for personalized bookmark recommendations. In: CIKM’08, Napa Valley, pp 1395–1396Google Scholar
  35. Vig J, Sen S, Riedl JT (2009) Tagsplanations: explaining recommendations using tags. In: IUI’09, Sanibel Island, pp 47–56Google Scholar
  36. Vig J, Soukup M, Sen S, Riedl JT (2010) Tag expression: tagging with feeling. In: UIST’10, New York, pp 323–332Google Scholar
  37. Wang H, Wang N, Yeung D-Y (2015) Collaborative deep learning for recommender systems. In: Proceedings of the 21th ACM SIGKDD international conference on knowledge discovery and data mining, pp 1235–1244Google Scholar
  38. Xu G, Gu Y, Dolog P, Zhang Y, Kitsuregawa M (2011a) Semrec: a semantic enhancement framework for tag based recommendation. In: AAAI’11, San Francisco, pp 1267–1272Google Scholar
  39. Xu G, Gu Y, Zhang Y, Yang Z, Kitsuregawa M (2011b) Toast: a topic-oriented tag-based recommender system. In: WISE’11, Sydney, pp 158–171Google Scholar
  40. Zanardi V, Capra L (2011) A scalable tag-based recommender system for new users of the Social Web. In: DEXA’11, Toulouse, pp 542–557Google Scholar
  41. Zhen Y, Li W-J, Yeung D-Y (2009) Tagicofi: tag informed collaborative filtering. In: RecSys’09, New York, pp 69–76Google Scholar

Recommended Reading

  1. Jannach D, Zanker M, Felfernig A, Friedrich G (2010) Recommender systems – an introduction. Cambridge University Press, LeidenCrossRefGoogle Scholar
  2. Ricci F, Rokach L, Shapira B, Kantor PB (eds) (2011) Recommender systems handbook. Springer, New YorkzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Computer ScienceTU DortmundDortmundGermany

Section editors and affiliations

  • Thomas Gottron
    • 1
  • Stefan Schlobach
    • 2
  • Steffen Staab
    • 3
  1. 1.Institute for Web Science and TechnologiesUniversität Koblenz-LandauKoblenzGermany
  2. 2.YUAmsterdamThe Netherlands
  3. 3.Institute for Web Science and TechnologiesUniversität Koblenz-LandauKoblenzGermany