Encyclopedia of Social Network Analysis and Mining

2018 Edition
| Editors: Reda Alhajj, Jon Rokne

Research on Online Health Communities: A Systematic Review

  • Ronghua Xu
  • Jiaqi Zhou
  • Qingpeng Zhang
  • James A. Hendler
Reference work entry
DOI: https://doi.org/10.1007/978-1-4939-7131-2_110215

Synonyms

Glossary

CHV

Consumer health vocabulary

LIWC

Linguistic inquiry and word count

NLP

Natural language processing

SNA

Social network analysis. It devotes to analyze the social networks (or social graphs) by using the techniques and methods defined in the field of complex networks, such as centrality measures and community detection

UMLS

Unified Medical Language System

User roles

A set of users’ behavioral patterns present in the social context of online communities

Definition

Online health communities (OHCs) are one type of online platforms, which are commonly used as a means to communicate with others, exchange messages, and share health-related information. Most of the users in the OHCs are common patients, and their interactions are sometimes mediated by doctors, nurses, or healthcare providers. These patients get together to share experience, obtain health...

This is a preview of subscription content, log in to check access.

Notes

Acknowledgment

This work was supported by the National Natural Science Foundation of China (NSFC) Grant Nos. 71402157 and 71672163, the Guangdong Provincial Natural Science Foundation No. 2014A030313753, and the Theme-Based Research Scheme of the Research Grants Council of Hong Kong Grant No. T32–102/14 N.

References

  1. Angst CM, Agarwal R (2009) Adoption of electronic health records in the presence of privacy concerns: the elaboration likelihood model and individual persuasion. MIS Q 33(2):339–370CrossRefGoogle Scholar
  2. Bansal G, Zahedi FM, Gefen D (2010) The impact of personal dispositions on information sensitivity, privacy concern and trust in disclosing health information online. Decis Support Syst 49(2):138–150.  https://doi.org/10.1016/j.dss.2010.01.010. Elsevier B.VCrossRefGoogle Scholar
  3. Blei D, Andrew Y, Jordan M (2003) Latent dirichlet allocation. J Mach Learn Res 3:993–1020MATHGoogle Scholar
  4. Brennan S, Sadilek A, Kautz H (2013) Towards understanding global spread of disease from everyday interpersonal interactions. In: IJCAI international joint conference on artificial intelligence, vol 1, pp 2783–2789Google Scholar
  5. Cain J (2011) Social media in health care: the case for organizational policy and employee education. Am J Health Syst Pharm 68(11):1036–1040.  https://doi.org/10.2146/ajhp100589CrossRefGoogle Scholar
  6. Carron-Arthur B, Ali K, Cunningham JA, Griffiths KM (2015) From help-seekers to influential users: a systematic review of participation styles in online health communities. J Med Internet Res 17(12).  https://doi.org/10.2196/jmir.4705CrossRefGoogle Scholar
  7. Carron-Arthur B, Reynolds J, Bennett K, Bennett A, Cunningham JA, Griffiths KM (2016) Community structure of a mental health internet support group: modularity in user thread participation. JMIR Mental Health 3(2):e20.  https://doi.org/10.2196/mental.4961CrossRefGoogle Scholar
  8. Chancellor S, Lin Z, Goodman E, Zerwas S, De Choudhury M (2016a) Quantifying and predicting mental illness severity in online pro-eating disorder communities. In: Proceedings of the 19th ACM conference on computer-supported cooperative work and social computing (CSCW 2016).  https://doi.org/10.1145/2818048.2819973CrossRefGoogle Scholar
  9. Chancellor S, Mitra T, De Choudhury M (2016b) Recovery amid pro-anorexia: analysis of recovery in social media. In: Proceedings of the 2016 CHI conference on human factors in computing systems, pp 2111–2123.  https://doi.org/10.1145/2858036.2858246CrossRefGoogle Scholar
  10. Chomutare T, Årsand E, Fernandez-Luque L, Lauritzen J, Hartvigsen G (2013) Inferring community structure in healthcare forums: an empirical study. Methods Inf Med 52(2):160–167.  https://doi.org/10.3414/ME12-02-0003CrossRefGoogle Scholar
  11. Clauset A, Newman MEJ, Moore C (2004) Finding community structure in very large networks. Phys Rev E 70. APS. http://arxiv.org/PS_cache/cond-mat/pdf/0408/0408187.pdf
  12. Coursaris CK, Liu M (2009) An analysis of social support exchanges in online HIV/AIDS self-help groups. Comput Hum Behav 25(4):911–918.  https://doi.org/10.1016/j.chb.2009.03.006. ElsevierCrossRefGoogle Scholar
  13. De Choudhury M, De S (2014) Mental health discourse on reddit: self-disclosure, social support, and anonymity. In: Proceedings of the eight international AAAI conference on weblogs and social media, pp 71–80Google Scholar
  14. De Choudrhury M, Gamon M, Counts S, Horvitz E (2013) Predicting depression via social media. In: Seventh international AAAI conference on weblogs and social media, vol 2, pp 128–137Google Scholar
  15. Deng H, Han J, Li H, Ji H, Wang H, Yue L (2014) Exploring and inferring user-user pseudo-friendship for sentiment analysis with heterogeneous networks. Stat Anal Data Mining 7(4):308–321.  https://doi.org/10.1002/sam.11223MathSciNetCrossRefGoogle Scholar
  16. Dijk V, Matthijs R, Huijgen NA, Willemsen SP, Laven JSE, Steegers EAP, Steegers-Theunissen RPM (2016) Impact of an mHealth platform for pregnancy on nutrition and lifestyle of the reproductive population: a survey. JMIR mHealth and uHealth 4(2):e53.  https://doi.org/10.2196/mhealth.5197CrossRefGoogle Scholar
  17. Doran D (2015) On the discovery of social roles in large scale social systems. Soc Netw Anal Min 5(1):1–18.  https://doi.org/10.1007/s13278-015-0290-0MathSciNetCrossRefGoogle Scholar
  18. Eysenbach G, Powell J, Englesakis M, Rizo C, Stern A, and others (2004) Health related virtual communities and electronic support groups: systematic review of the effects of online peer to peer interactions. BMJ: British Medical J 328(7449):1166.  https://doi.org/10.1136/bmj.328.7449.1166. BMJ Publishing Group LtdCrossRefGoogle Scholar
  19. Faraj S, Johnson SL (2011) Network exchange patterns in online communities. Organ Sci 22(6):1464–1480.  https://doi.org/10.1287/orsc.1100.0600. INFORMSCrossRefGoogle Scholar
  20. Fox S (2011) The social life of health information, 2011. Pew Internet & American Life Project, pp 1–33. http://www.who.int/topics/tuberculosis/en/
  21. Fox S, Duggan M (2013) Health Online 2013. http://www.pewinternet.org/2013/01/15/health-online-2013/
  22. Frey BJ, Dueck D (2007) Clustering by passing messages between data points. Science 315(5814):972–976.  https://doi.org/10.1126/science.1136800. American Association for the Advancement of Science, New YorkMathSciNetCrossRefMATHGoogle Scholar
  23. Frost J, Vermeulen IE, Beekers N (2014) Anonymity versus privacy: selective information sharing in online cancer communities. J Med Internet Res 16(5):e126.  https://doi.org/10.2196/jmir.2684. Edited by Gunther Eysenbach JMIR Publications Inc, TorontoCrossRefGoogle Scholar
  24. Golder SA, Donath J (2004) Social roles in electronic communities. Aoir 5:1–25. papers2://publication/uuid/A44A65B0-3B94–4809-A728-DAB3D4674856Google Scholar
  25. Hale TM, Pathipati AS, Zan S, Jethwani K (2014) Representation of health conditions on Facebook: content analysis and evaluation of user engagement. J Med Internet Res 16(8):e182.  https://doi.org/10.2196/jmir.3275CrossRefGoogle Scholar
  26. Hamm MP, Shulhan J, Williams G, Milne A, Scott SD, Hartling L (2014) A systematic review of the use and effectiveness of social media in child health. BMC Pediatr 14(1):138.  https://doi.org/10.1186/1471-2431-14-138CrossRefGoogle Scholar
  27. Howes C, Purver M, McCabe R (2014) Linguistic indicators of severity and progress in online text-based therapy for depression. In: Workshop on computational linguistics and clinical psychology: from linguistic signal to clinical reality, no 611733, pp 7–16Google Scholar
  28. Huesch MD (2013) Privacy threats when seeking online health information. JAMA Intern Med 173(19):4–7.  https://doi.org/10.1001/jamainternmed.2013.7795CrossRefGoogle Scholar
  29. Ji Y, Hong H, Arriaga R, Rozga A, Abowd G, Eisenstein J (2014) Mining themes and interests in the Asperger’s and autism community. In: Proceedings of the workshop on computational linguistics and clinical psychology: from linguistic signal to clinical reality, no. JUNE, pp 97–106. http://www.aclweb.org/anthology/W/W14/W14-3212%5Cn, https://www.researchgate.net/publication/272747520_Mining_Themes_and_Interests_in_the_Asperger’s_and_Autism_Community_full_paper%5Cn, https://scholar.google.com/citations?view_op=view_citation&hl=en&user=gb8sbdc
  30. Kiciman E, Kumar M, Coppersmith G, Dredze M, De Choudhury M (2016) Discovering shifts to suicidal ideation from mental health content in social media. In: Proceedings of the SIGCHI conference on human factors in computing systems.  https://doi.org/10.1145/2858036.2858207CrossRefGoogle Scholar
  31. Koufopoulos JT, Conner MT, Gardner PH, Kellar I (2016) A web-based and mobile health social support intervention to promote adherence to inhaled asthma medications: randomized controlled trial. J Med Internet Res 18(6):e122.  https://doi.org/10.2196/jmir.4963CrossRefGoogle Scholar
  32. Liang Y, Zheng X, Zeng DD, Zhou X, Leischow SJ, Chung W (2015) Characterizing social interaction in tobacco-oriented social networks: an empirical analysis. Sci Rep:10060.  https://doi.org/10.1038/srep10060. Nature Publishing Group
  33. MacLean DL, Heer J (2013) Identifying medical terms in patient-authored text: a crowdsourcing-based approach. J Am Med Inform Assoc 20(6):1120–1127.  https://doi.org/10.1136/amiajnl-2012-001110CrossRefGoogle Scholar
  34. Maclean D, Gupta S, Lembke A, Manning C, Heer J (2015) Forum77: an analysis of an online health forum dedicated to addiction recovery. In: CSCW’15 proceedings of the 18th ACM conference on computer supported cooperative work & social computing, pp 1511–1526.  https://doi.org/10.1145/2675133.2675146CrossRefGoogle Scholar
  35. Maloney-Krichmar D, Preece J (2005) A multilevel analysis of sociability, usability, and community dynamics in an online health community. ACM Trans Comput-Hum Interact 12(2):201–232.  https://doi.org/10.1145/1067860.1067864CrossRefGoogle Scholar
  36. McNab C (2009) What social media offers to health professionals and citizens.pdf. Bull World Health Organ. http://www.who.int/bulletin/volumes/87/8/09-066712/en/CrossRefGoogle Scholar
  37. Mhurchu N, Cliona RW, McRobbie H, Ball K, Crawford D, Michie J, Jiang Y, Maddison R, Waterlander W, Myers K (2014) Feasibility, acceptability and potential effectiveness of a mobile health (mHealth) weight management programme for New Zealand adults. BMC Obesity 1(1):10.  https://doi.org/10.1186/2052-9538-1-10CrossRefGoogle Scholar
  38. Moreno MA, Jelenchick LA, Egan KG, Cox E, Young H, Gannon KE, Becker T (2011) Feeling bad on Facebook: depression disclosures by college students on a social networking site. Depress Anxiety 28(6):447–455.  https://doi.org/10.1002/da.20805CrossRefGoogle Scholar
  39. Morrison D, Mcloughlin I, Hogan A, Hayes C (2010) Evolutionary clustering and analysis of user behaviour in online forums. Artif Intell:519–522Google Scholar
  40. Nabi RL, Prestin A, and So J (2013) Facebook friends with (health) benefits? Exploring social network site use and perceptions of social support, stress, and well-being. Cyberpsychol Behav Soc Netw 16 (10). Mary Ann Liebert, Inc, 721–727.  https://doi.org/10.1089/cyber.2012.0521 140 Huguenot Street, 3rd Floor New Rochelle, NY 10801 USACrossRefGoogle Scholar
  41. Nature (2013) No dishonour in depression. Nature 498(7453):137–137.  https://doi.org/10.1038/498137aCrossRefGoogle Scholar
  42. Neal L, Oakley K, Lindgaard G, Kaufman D, Leimeister JM, Selker T (2007) Online health communities. In: CHI’07 extended abstracts on human factors in computing systems, New York. ACM, pp 2129–2132.  https://doi.org/10.1145/1240866.1240965
  43. Partridge SR, McGeechan K, Hebden L, Balestracci K, Wong AT, Denney-Wilson E, Harris MF, Phongsavan P, Bauman A, Allman-Farinelli M (2015) Effectiveness of a mHealth lifestyle program with telephone support (TXT2BFiT) to prevent unhealthy weight gain in young adults: randomized controlled trial. JMIR mHealth and uHealth 3(2):e66.  https://doi.org/10.2196/mhealth.4530CrossRefGoogle Scholar
  44. Rowe M, Fernandez M, Angeletou S, Alani H (2013) Community analysis through semantic rules and role composition derivation. J Web Semantics 18(1):31–47. Elsevier B.V.  https://doi.org/10.1016/j.websem.2012.05.002CrossRefGoogle Scholar
  45. Rupert DJ, Moultrie RR, Read JG, Amoozegar JB, Bornkessel AS, O’Donoghue AC, Sullivan HW (2014) Perceived healthcare provider reactions to patient and caregiver use of online health communities. Patient Educ Couns 96(3):320–326.  https://doi.org/10.1016/j.pec.2014.05.015CrossRefGoogle Scholar
  46. Sadilek A, Kautz H, Silenzio V (2012) Modeling spread of disease from social interactions. In: Proceedings of the sixth international AAAI conference on weblogs and social media, pp 322–329Google Scholar
  47. Souza D, Sieckenius C, Preece J (2004) A framework for analyzing and understanding online communities. In: Interacting with computers, vol 16, pp 579–610.  https://doi.org/10.1016/j.intcom.2003.12.006CrossRefGoogle Scholar
  48. Stinson J, McGrath P, Hodnett E, Feldman B, Duffy C, Huber A, Tucker L et al (2010) Usability testing of an online self-management program for adolescents with juvenile idiopathic arthritis. J Med Internet Res 12(3).  https://doi.org/10.2196/jmir.1349CrossRefGoogle Scholar
  49. Su WC (2014) Integrating and mining virtual communities across multiple online social networks: concepts, approaches and challenges. In: 2014 4th international conference on digital information and communication technology and its applications, DICTAP 2014, pp 199–204.  https://doi.org/10.1109/DICTAP.2014.6821682CrossRefGoogle Scholar
  50. Tamersoy A, De Choudhury M, Chau DH (2015) Characterizing smoking and drinking abstinence from social media. In: Proceedings of the 26th ACM conference on hypertext & social media, pp 139–148.  https://doi.org/10.1145/2700171.2791247CrossRefGoogle Scholar
  51. Toma CL, D’Angelo JD (2014) Tell-tale words: linguistic cues used to infer the expertise of online medical advice. J Lang Soc Psychol 34(1):25–45.  https://doi.org/10.1177/0261927X14554484CrossRefGoogle Scholar
  52. Välimäki M, Athanasopoulou C, Lahti M, Adams CE (2016) Effectiveness of social media interventions for people with schizophrenia: a systematic review and meta-analysis. J Med Internet Res 18(4):e92.  https://doi.org/10.2196/jmir.5385CrossRefGoogle Scholar
  53. Vodicka E, Mejilla R, Leveille SG, Ralston JD, Darer JD, Delbanco T, Walker J, Elmore JG (2013) Online access to doctors’ notes: patient concerns about privacy. J Med Internet Res 15(9):e208.  https://doi.org/10.2196/jmir.2670CrossRefGoogle Scholar
  54. Vydiswaran V, Vinod G, Yang L, Zheng K, Hanauer DA, Mei Q (2013) User-created groups in health Forums: what makes them special? In: International AAAI conference on weblogs and social media, pp 515–524.  https://doi.org/10.1007/978-3-642-28997-2_19CrossRefGoogle Scholar
  55. Vydiswaran V, Vinod G, Mei Q, Hanauer DA, Zheng K (2014) Mining consumer health vocabulary from community-generated text. In: AMIA annual symposium proceedings, pp 1150–1159Google Scholar
  56. Wallace BC (2012) What affects patient (dis) satisfaction? Analyzing online doctor ratings with a joint topic-sentiment model. J Gen Intern Med 18(9):13–19Google Scholar
  57. Wang C, Mao Y, Huberman BA (2012) From user comments to on-line conversations. In: Proceedings of the 18th ACM SIGKDD international conference on knowledge discovery and data mining – KDD’12. ACM Press, New York, p 244.  https://doi.org/10.1145/2339530.2339573CrossRefGoogle Scholar
  58. Wang YC, Kraut RE, Levine JM (2015a) Eliciting and receiving online support: using computer-aided content analysis to examine the dynamics of online social support. J Med Internet Res 17(4):e99.  https://doi.org/10.2196/jmir.3558CrossRefGoogle Scholar
  59. Wang X, Zuo Z, Zhao K (2015b) The evolution of user roles in online health communities – a social support perspective. In: Pacific Asia conference on information systems (PACIS 2015)Google Scholar
  60. White A, Chan J, Hayes C, Murphy BT (2012) Mixed membership models for exploring user roles in online fora. In: Proceedings of the 6th annual international conference on weblogs and social media – ICWSM2012, pp 599–602Google Scholar
  61. Xu R, Zhang Q (2016) Understanding online health groups for depression: social network and linguistic perspectives. J Med Internet Res 18(3):e63.  https://doi.org/10.2196/jmir.5042CrossRefGoogle Scholar
  62. Yang CC (2014). Patient centered healthcare informatics. IEEE Intell Inform Bull 15(1):1–5Google Scholar
  63. Yang CC, Yang H, Jiang L (2014) Postmarketing drug safety surveillance using publicly available health-consumer-contributed content in social media. ACM Trans Manag Inf Syst 5(1):1–21.  https://doi.org/10.1145/2576233CrossRefGoogle Scholar
  64. Yang CC, Ip E, Avis N, Ping Q, Jiang L (2015) A comparative study of symptom clustering on clinical and social media data. In: Social computing, behavioral-cultural modeling, and prediction. Springer International Publishing, pp 222–231.  https://doi.org/10.1007/978-3-319-16268-3_23Google Scholar
  65. Zhang Q, Difranzo D, Hendler JA (2014) Social networking on the world wide web: a review. In: Alhajj R, Rokne J (eds) Encyclopedia of social network analysis and mining. Springer-Verlag, NewYorkGoogle Scholar
  66. Zhao K, Yen J, Greer G, Qiu B, Mitra P, Portier K (2014) Finding influential users of online health communities: a new metric based on sentiment influence. J Am Med Inform Assoc 21:e212–e218.  https://doi.org/10.1136/amiajnl-2013-002282CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media LLC, part of Springer Nature 2018

Authors and Affiliations

  • Ronghua Xu
    • 1
  • Jiaqi Zhou
    • 2
  • Qingpeng Zhang
    • 2
    • 3
  • James A. Hendler
    • 4
    • 5
  1. 1.College of Economics and ManagementZhejiang University of TechnologyHangzhouChina
  2. 2.Department of Systems Engineering and Engineering ManagementCity University of Hong KongHong KongChina
  3. 3.Shenzhen Research Institute of City University of Hong KongShenzhenChina
  4. 4.Department of Computer ScienceRensselaer Polytechnic InstituteTroyUSA
  5. 5.Computer and Cognitive Science Departments, Tetherless World ConstellationRensselaer Polytechnic InstituteTroyUSA

Section editors and affiliations

  • Charalampos Chelmis
    • 1
  • Nitin Agarwal
    • 2
  1. 1.Dept. of Computer ScienceUniversity at AlbanyAlbanyUSA
  2. 2.Department of Information ScienceUniversity of Arkansas at Little RockLittle RockUSA