Encyclopedia of Social Network Analysis and Mining

2018 Edition
| Editors: Reda Alhajj, Jon Rokne

Crowdsourced Social Data for Recommending Tourist Itineraries

  • Igo Ramalho Brilhante
  • Franco Maria Nardini
  • Jose Antonio Macedo
  • Raffaele Perego
  • Chiara Renso
Reference work entry
DOI: https://doi.org/10.1007/978-1-4939-7131-2_110202



Crowdsourced data

The data obtained by a crowdsourcing process, that is, by contributions (spontaneous or solicited) from a large group of people, especially an online community

Generalized Maximum Coverage Problem (GMCP)

is an extension of the classical Budgeted Maximum Coverage Problem. Given a cost budget B and a set of nondisjoint sets of items in E, where each item eiE is associated with a cost ci and a weight wi, the GMCP asks for selecting a subset of these sets such that the total weight of the items in the union of the chosen sets is maximized and the total cost of these items is lower than B

Itinerary (or sightseeing tour or simply tour)

is a detailed plan for a tourist journey, listing the PoIs to visit in a temporal sequence, possibly scheduled in the tourist agenda

Orienteering Problem (OP)

given a set of vertices V, where si is the score assigned to each vertex viV, and tijis the time needed to...

This is a preview of subscription content, log in to check access.



This work has been partially supported by SoBigData (GA. 654024) and BASMATI (GA. 723131) H2020 European projects.


  1. Brilhante I, Macedo JA, Nardini FM, Perego R, Renso C (2014) Tripbuilder: a tool for recommending sightseeing tours. In: de Rijke M, Kenter T, de Vries AP, Zhai C, de Jong F, Radinsky K, Hofmann K, (eds) Advances in information retrieval, Lecture notes in computer science, vol 8416. Springer, Heidelberg, pp 771–774Google Scholar
  2. Brilhante IR, Macedo JA, Nardini FM, Perego R, Renso C (2015) On planning sightseeing tours with TripBuilder. Inf Process Manag 51(2):1–15CrossRefGoogle Scholar
  3. Cohen R, Katzir L (2008) The generalized maximum coverage problem. Inf Process Lett 108(1):15–22MathSciNetzbMATHCrossRefGoogle Scholar
  4. De Choudhury M, Feldman M, Amer-Yahia S, Golbandi N, Lempel R, Cong Y (2010) Automatic construction of travel itineraries using social breadcrumbs. In: Proceedings of the HT, ACM, New York, US, pp 35–44Google Scholar
  5. Gavalas D, Konstantopoulos C, Mastakas K, Pantziou G (2014) A survey on algorithmic approaches for solving tourist trip design problems. J Heuristics 20(3):291–328CrossRefGoogle Scholar
  6. Gionis A, Lappas T, Pelechrinis K, Terzi E (2014) Customized tour recommendations in urban areas. In: Proceedings of the 7th ACM international conference on web search and data mining, WSDM ‘14. ACM, New York, pp 313–322Google Scholar
  7. Godart JM (1999) Combinatorial optimisation based decision support system for trip planning. In: Information and communication technologies in tourism 1999. Springer, Heidelberg, pp 318–327CrossRefGoogle Scholar
  8. Matai R, Mittal ML, Singh S (2010) In: Davendra D (ed) Traveling salesman problem: an overview of applications, formulations, and solution approaches. InTech, London, UKGoogle Scholar
  9. Souffriau W, Vansteenwegen P, Vertommen J, Berghe GV, Van Oudheusden D (2008) A personalized tourist trip design algorithm for mobile tourist guides. Appl Artif Intell 22(10):964–985CrossRefGoogle Scholar
  10. Surowiecki J (2004) The wisdom of crowds: why the many are smarter than the few and how collective wisdom shapes business, economies, societies, and nations. Doubleday, New YorkGoogle Scholar
  11. Vansteenwegen P, Souffriau W (2010) Trip planning functionalities: state of the art and future. Inf Technol Tour 12(4):305–315CrossRefGoogle Scholar
  12. Vansteenwegen P, Souffriau W, Vanden Berghe G, Van Oudheusden D (2009) A guided local search metaheuristic for the team orienteering problem. Eur J Oper Res 196(1):118–127zbMATHCrossRefGoogle Scholar
  13. Vansteenwegen P, Souffriau W, Berghe GV, Oudheusden DV (2011) The city trip planner: an expert system for tourists. Expert Sys Appl 38(6):6540–6546CrossRefGoogle Scholar
  14. Yoon H, Zheng Y, Xie X, Woo W (2012) Social itinerary recommendation from user-generated digital trails. Pers Ubiquit Comput 16(5):469–484CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media LLC, part of Springer Nature 2018

Authors and Affiliations

  • Igo Ramalho Brilhante
    • 1
  • Franco Maria Nardini
    • 2
  • Jose Antonio Macedo
    • 1
  • Raffaele Perego
    • 2
  • Chiara Renso
    • 3
  1. 1.Federal University of CearaFortalezaBrazil
  2. 2.ISTI-CNRPisaItaly
  3. 3.ISTI Institute of National Research CouncilPisaItaly

Section editors and affiliations

  • Guandong Xu
    • 1
  • Peng Cui
    • 2
  1. 1.University of Technology SydneySydneyAustralia
  2. 2.Tsinghua UniversityBeijingChina