Encyclopedia of Social Network Analysis and Mining

2018 Edition
| Editors: Reda Alhajj, Jon Rokne

Community Detection and Analysis on Attributed Social Networks

  • Martin Atzmueller
Reference work entry
DOI: https://doi.org/10.1007/978-1-4939-7131-2_110194

Synonyms

Glossary

Attributed social network

A social network where there exists a set of attributes (properties) assigned to actors and/or or the involved ties, respectively

Community detection

The task of identifying communities

Community

A group of densely connected actors in a social network

Social network

A network made up of a set of actors (nodes) with ties (edges) between the actors

Definition

While community detection identifies communities on plain social networks focusing on the network structure, the analysis of attributed social networks allows for more fine-grained community detection approaches combining compositional analysis of the attributes (properties) of actors and/or ties in social networks (cf., Wasserman and Faust 1994), with structural analysis.

Introduction

Communities and cohesive subgroups have been extensively studied in social sciences, e.g., using social network analysis...

This is a preview of subscription content, log in to check access.

References

  1. Atzmueller M (2015) Subgroup discovery – advanced review. WIREs Data Min Knowl Discov 5(1):35–49CrossRefGoogle Scholar
  2. Atzmueller M (2016a) Detecting community patterns capturing exceptional link trails. In: Proceedings of the IEEE/ACM ASONAM, IEEE Press, BostonGoogle Scholar
  3. Atzmueller M (2016b) Local exceptionality detection on social interaction networks. In: Proceedings of the ECML-PKDD, Springer, HeidelbergCrossRefGoogle Scholar
  4. Atzmueller M, Hilgenberg K (2013) Towards capturing social interactions with SDCF: an extensible framework for mobile sensing and ubiquitous data collection. In: Proceedings of the international workshop on modeling social media, Hypertext 2013, ACM Press, New YorkGoogle Scholar
  5. Atzmueller M, Lemmerich F (2012) VIKAMINE – open-source subgroup discovery, pattern mining, and analytics. In: Proceedings of the ECML-PKDD, Springer, HeidelbergCrossRefGoogle Scholar
  6. Atzmueller M, Lemmerich F (2013) Exploratory pattern mining on social media using geo-references and social tagging information. IJWS 2(1/2):80CrossRefGoogle Scholar
  7. Atzmueller M, Mitzlaff F (2011) Efficient descriptive community mining. In: Proceedings FLAIRS, AAAI Press, Palo Alto, pp 459–464Google Scholar
  8. Atzmueller M, Puppe F (2005) Semi-automatic visual subgroup mining using VIKAMINE. J Univ Comput Sci 11(11):1752–1765Google Scholar
  9. Atzmueller M, Puppe F (2008) A case-based approach for characterization and analysis of subgroup patterns. J Appl Intell 28(3):210–221CrossRefGoogle Scholar
  10. Atzmueller M, Roth-Berghofer T (2010) The mining and analysis continuum of explaining uncovered. In: Proceedings of the 30th SGAI international conference on artificial intelligence (AI-2010), London, UKGoogle Scholar
  11. Atzmueller M, Baumeister J, Puppe F (2006) Introspective subgroup analysis for interactive knowledge refinement. In: Proceedings FLAIRS, AAAI Press, Palo Alto, pp 402–407Google Scholar
  12. Atzmueller M, Benz D, Doerfel S, Hotho A, Jäschke R, Macek BE, Mitzlaff F, Scholz C, Stumme G (2011) Enhancing social interactions at conferences. Inform Technol 53(3):101–107Google Scholar
  13. Atzmueller M, Becker M, Doerfel S, Kibanov M, Hotho A, Macek BE, Mitzlaff F, Mueller J, Scholz C, Stumme G (2012) Ubicon: observing social and physical activities. In: Proceedings of the IEEE international conference on cyber, physical and social computing, IEEE computer society, Washington, DC, pp 317–324Google Scholar
  14. Atzmueller M, Becker M, Kibanov M, Scholz C, Doerfel S, Hotho A, Macek BE, Mitzlaff F, Mueller J, Stumme G (2014) Ubicon and its applications for ubiquitous social computing. New Rev Hypermed Multimed 20(1):53–77CrossRefGoogle Scholar
  15. Atzmueller M, Mueller J, Becker M (2015) Mining, modeling and recommending ‘Things’ in social media, Springer, Heidelberg, chap exploratory subgroup analytics on ubiquitous data. No. 8940 in LNAIGoogle Scholar
  16. Atzmueller M, Doerfel S, Mitzlaff F (2016a) Description-oriented community detection using exhaustive subgroup discovery. Inf Sci 329:965–984CrossRefGoogle Scholar
  17. Atzmueller M, Kloepper B, Mawla HA, Jäschke B, Hollender M, Graube M, Arnu D, Schmidt A, Heinze S, Schorer L, Kroll A, Stumme G, Urbas L (2016b) Big data analytics for proactive industrial decision support: approaches and first experiences in the context of the FEE project. atp edition 58(9)CrossRefGoogle Scholar
  18. Atzmueller M, Schmidt A, Kibanov M (2016c) DASHTrails: an approach for modeling and analysis of distribution-adapted sequential hypotheses and trails. In: Proceedings of the WWW 2016 (Companion), IW3C2/ACMGoogle Scholar
  19. Atzmueller M, Schmidt A, Kloepper B, Arnu D (2017) HypGraphs: an approach for analysis and assessment of graph-based and sequential hypotheses. In: New frontiers in mining complex patterns. Postproceedings NFMCP 2016, Springer, Heidelberg, LNAICrossRefGoogle Scholar
  20. Bendimerad AA, Plantevit M, Robardet C (2016) Unsupervised exceptional attributed subgraph mining in urban data. In: Proceedings of the IEEE international conference on data mining, IEEE, Washington, DC, pp 21–30Google Scholar
  21. Benyahia O, Largeron C, Jeudy B, Zaïane OR (2016) DANCer: dynamic attributed network with community structure generator. In: Joint European conference on machine learning and knowledge discovery in databases, Springer, pp 41–44CrossRefGoogle Scholar
  22. Bobadilla J, Ortega F, Hernando A, Gutiérrez A (2013) Recommender systems survey. Knowl-Based Syst 46:109–132CrossRefGoogle Scholar
  23. Bonchi F, Castillo C, Gionis A, Jaimes A (2011) Social network analysis and mining for business applications. ACM Trans Intell Syst Technol 2(3):22CrossRefGoogle Scholar
  24. Duivesteijn W, Feelders AJ, Knobbe A (2016) Exceptional model mining. Data Min Knowl Disc 30(1):47–98MathSciNetCrossRefGoogle Scholar
  25. Folmer J, Kirchen I, Trunzer E, Vogel-Heuser B, Pötter T, Graube M, Heinze S, Urbas L, Atzmueller M, Arnu D (2017) Challenges for big and smart data in process industries. atp editionGoogle Scholar
  26. Fortunato S (2010) Community detection in graphs. Phys Rep 486(3–5):75–174MathSciNetCrossRefGoogle Scholar
  27. Freeman L (1978) Segregation in social networks. Sociol Methods Res 6(4):411CrossRefGoogle Scholar
  28. Galbrun E, Gionis A, Tatti N (2014) Overlapping community detection in labeled graphs. Data Min Knowl Discov 28(5–6):1586–1610MathSciNetCrossRefGoogle Scholar
  29. Grosskreutz H, Rüping S, Wrobel S (2008) Tight optimistic estimates for fast subgroup discovery. In: Proceedings of the ECML-PKDD, LNCS, vol 5211. Springer, Heidelberg, pp 440–456Google Scholar
  30. Günnemann S, Färber I, Boden B, Seidl T (2013) GAMer: a synthesis of subspace clustering and dense subgraph mining. In: Knowledge and information systems (KAIS)CrossRefGoogle Scholar
  31. Hanneke S, Fu W, Xing EP (2010) Discrete temporal models of social networks. Electronic Journal of Statistics, 4:585–605MathSciNetzbMATHCrossRefGoogle Scholar
  32. Kaytoue M, Plantevit M, Zimmermann A, Bendimerad A, Robardet C (2017) Exceptional contextual subgraph mining. Mach Learn 1–41Google Scholar
  33. Kibanov M, Atzmueller M, Scholz C, Stumme G (2014) Temporal evolution of contacts and communities in networks of face-to-face human interactions. Sci China 57:1–17Google Scholar
  34. Kibanov M, Atzmueller M, Illig J, Scholz C, Barrat A, Cattuto C, Stumme G (2015) Is web content a good proxy for real-life interaction? A case study considering online and offline interactions of computer scientists. In: Proceedings of the IEEE/ACM international conference on advances in social networks analysis and mining (ASONAM), IEEE Press, BostonGoogle Scholar
  35. Klösgen W (1996) Explora: a multipattern and multistrategy discovery assistant. In: Fayyad UM, Piatetsky-Shapiro G, Smyth P, Uthurusamy R (eds) Advances in knowledge discovery and data mining. AAAI Press, Menlo Park, pp 249–271Google Scholar
  36. Lancichinetti A, Fortunato S, Radicchi F (2008) Benchmark graphs for testing community detection algorithms. Phys Rev E 78(4):046,110CrossRefGoogle Scholar
  37. Largeron C, Mougel PN, Rabbany R, Zaïane OR (2015) Generating attributed networks with communities. PLoS One 10(4):e0122777CrossRefGoogle Scholar
  38. Leman D, Feelders A, Knobbe A (2008) Exceptional model mining. In: Proceedings of the European conference on machine learning and principles and practice of knowledge discovery in databases, Lecture notes in computer science, vol 5212. Springer, pp 1–16Google Scholar
  39. Lemmerich F, Becker M, Atzmueller M (2012) Generic pattern trees for exhaustive exceptional model mining. In: Proceedings of the ECML/PKDD, Springer, HeidelbergCrossRefGoogle Scholar
  40. Leskovec J, Lang KJ, Mahoney M (2010) Empirical comparison of algorithms for network community detection. In: Proceedings of the 19th international conference on World Wide Web. ACM, New York, pp 631–640Google Scholar
  41. Lin YR, Chi Y, Zhu S, Sundaram H, Tseng BL (2009) Analyzing communities and their evolutions in dynamic social networks. ACM Trans Knowl Discov Data 3:8:1–8:31CrossRefGoogle Scholar
  42. Macek BE, Scholz C, Atzmueller M, Stumme G (2012) Anatomy of a conference. In: Proceedings of the ACM conference on hypertext and social media. ACM Press, New York, pp 245–254Google Scholar
  43. Mannila H (2000) Theoretical frameworks for data mining. SIGKDD Explor Newsl 1(2):30–32CrossRefGoogle Scholar
  44. Mitzlaff F, Atzmueller M, Benz D, Hotho A, Stumme G (2011) Community assessment using evidence networks. In: Analysis of social media and ubiquitous data. LNAI, vol 6904, Springer Verlag, Heidelberg, GermanyGoogle Scholar
  45. Mitzlaff F, Atzmueller M, Stumme G, Hotho A (2013) Semantics of user interaction in social media. In: Ghoshal G, Poncela-Casasnovas J, Tolksdorf R (eds) Complex networks IV, studies in computational intelligence, vol 476. Springer, HeidelbergGoogle Scholar
  46. Mitzlaff F, Atzmueller M, Hotho A, Stumme G (2014) The social distributional hypothesis. J Soc Netw Anal Min 4(216)Google Scholar
  47. Moser F, Colak R, Rafiey A, Ester M (2009) Mining cohesive patterns from graphs with feature vectors. In: SDM, SIAM, vol 9, pp 593–604CrossRefGoogle Scholar
  48. Muff S, Rao F, Caflisch A (2005) Local Modularity Measure for Network Clusterizations. Phys Rev E 72(5):056107CrossRefGoogle Scholar
  49. Newman MEJ (2004) Detecting community structure in networks. Europ Physical J 38Google Scholar
  50. Newman MEJ (2006) Modularity and community structure in networks. Proc Natl Acad Sci 103(23):8577–8582CrossRefGoogle Scholar
  51. Newman ME, Girvan M (2004) Finding and evaluating community structure in networks. Phys Rev E Stat Nonlinear Soft Matter Phys 69(2):1–15CrossRefGoogle Scholar
  52. Newman D, Lau JH, Grieser K, Baldwin T (2010) Automatic evaluation of topic coherence. In: Human language technologies: The 2010 annual conference of the North American chapter of the association for computational linguistics, association for computational linguistics, Los Angeles, pp 100–108Google Scholar
  53. Nicosia V, Mangioni G, Carchiolo V, Malgeri M (2009) Extending the definition of modularity to directed graphs with overlapping communities. J Stat Mech 03024Google Scholar
  54. Orman GK, Labatut V, Cherifi H (2012) Comparative evaluation of community detection algorithms: a topological approach. J Stat Mech Theory Exp 2012(08):P08001CrossRefGoogle Scholar
  55. Palla G, Dernyi I, Farkas I, Vicsek T (2005) Uncovering the overlapping community structure of complex networks in nature and society. Nature 435(7043):814–818CrossRefGoogle Scholar
  56. Pool S, Bonchi F, van Leeuwen M (2014) Description-driven community detection. TIST 5(2):1–28CrossRefGoogle Scholar
  57. Riboni D, Bettini C (2012) Private context-aware recommendation of points of interest: an initial investigation. In: IEEE international conference on pervasive computing and communications workshops (PERCOM Workshops), IEEE, pp 584–589Google Scholar
  58. Robins G, Pattison P, Kalish Y, Lusher D (2007) An introduction to exponential random graph (p*) models for social networks. Soc Netw 29(2):173–191CrossRefGoogle Scholar
  59. Roth-Berghofer TR, Richter MM (2008) On explanation. Künstl Intelligenz 22(2):5–7Google Scholar
  60. Shneiderman B (1996) The eyes have it: a task by data type taxonomy for information visualizations. In: Proceedings of the IEEE symposium on visual languages, Boulder, pp 336–343Google Scholar
  61. Siersdorfer S, Sizov S (2009) Social recommender systems for web 2.0 folksonomies. In: Proceedings of the ACM conference on hypertext and hypermedia, ACM, New York, pp 261–270Google Scholar
  62. Silva A, Meira Jr W, Zaki MJ (2012) Mining attribute-structure correlated patterns in large attributed graphs. Proc VLDB Endowment 5(5):466–477CrossRefGoogle Scholar
  63. Sun X, Lin H (2013) Topical community detection from mining user tagging behavior and interest. JASIST 64(2):321–333MathSciNetCrossRefGoogle Scholar
  64. Traud AL, Mucha PJ, Porter MA (2012) Social structure of facebook networks. Physica A Stat Mech Appl 391(16):4165–4180CrossRefGoogle Scholar
  65. Wang K, Jiang Y, Tuzhilin A (2006) Mining actionable patterns by role models. In: Proceedings of the international conference on data engineering, IEEE, Washington, DC, pp 6–16Google Scholar
  66. Wasserman S, Faust K (1994) Social network analysis: methods and applications, 1st edn. Structural analysis in the social sciences, no. 8. Cambridge University Press, CambridgeGoogle Scholar
  67. Wrobel S (1997) An algorithm for multi-relational discovery of subgroups. In: Proceedings of the 1st European symposium on principles of data mining and knowledge discovery, Springer, Heidelberg, pp 78–87CrossRefGoogle Scholar
  68. Xie J, Kelley S, Szymanski BK (2013) Overlapping community detection in networks: the state- of-the-art and comparative study. ACM Comput Surv 45(4):43:1–43:35zbMATHCrossRefGoogle Scholar
  69. Yang J, Leskovec J (2012) Defining and evaluating network communities based on ground-truth. In: Proceedings of the ACM SIGKDD workshop on mining data semantics. ACM, New York, MDS ‘12, pp 3:1–3:8Google Scholar

Copyright information

© Springer Science+Business Media LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Tilburg Center for Communication and CognitionTilburg UniversityTilburgThe Netherlands
  2. 2.Research Center for Information System DesignUniversity of KasselKasselGermany

Section editors and affiliations

  • Huan Liu
    • 1
  • Lei Tang
    • 2
  1. 1.Arizona State UniversityTempeUSA
  2. 2.Chief Data Scientist, Clari Inc.SunnyvaleUSA