Encyclopedia of Social Network Analysis and Mining

2018 Edition
| Editors: Reda Alhajj, Jon Rokne

Canonical Correlation Analysis

  • Hervé Abdi
  • Vincent Guillemot
  • Aida Eslami
  • Derek Beaton
Reference work entry
DOI: https://doi.org/10.1007/978-1-4939-7131-2_110191



Canonical correlation

Correlation between two canonical variates of the same pair. This is the criterion optimized by CCA

Canonical loadings

Correlation between the original variables and the canonical variates. Sometimes used as a synonym for canonical vectors (because these quantities differ only by their normalization)

Canonical variates

The latent variables (one per data table) computed in CCA (also called canonical variables, canonical variable scores, or canonical factor scores). The canonical variates have maximal correlation

Canonical vectors

The set of coefficients of the linear combinations used to compute the canonical variates, also called canonical weights. Canonical vectors are also sometimes called canonical loadings

Latent variable

A linear combination of the variables of one data table. In general, a latent variable is computed to satisfy some predefined criterion



This is a preview of subscription content, log in to check access.


  1. Abdi H (2003) Multivariate analysis. In: Lewis-Beck M, Bryman A, Futing T (eds) Encyclopedia for research methods for the social sciences. Sage, Thousand Oaks, pp 699–702Google Scholar
  2. Abdi H (2007a) Singular value decomposition (SVD) and generalized singular value decomposition (GSVD). In: Salkind NJ (ed) Encyclopedia of measurement and statistics. Sage, Thousand Oaks, pp 907–912Google Scholar
  3. Abdi H (2007b) Eigen-decomposition: eigenvalues and eigenvectors. In: Salkind NJ (ed) Encyclopedia of measurement and statistics. Sage, Thousand Oaks, pp 304–308Google Scholar
  4. Abdi H (2010) Partial least squares regression and projection on latent structure regression (PLS regression). Wiley Interdisciplinary Reviews: Computational Statistics 2:97–106CrossRefGoogle Scholar
  5. Abdi, H., and Williams, L. J. (2013). Partial least squares methods: partial least squares correlation and partial least square regression. Computational Toxicology, II, 549–579.Google Scholar
  6. Abdi H, Vinzi VE, Russolillo G, Saporta G, Trinchera L (eds) (2016) The multiple facets of partial least squares methods. Springer Verlag, New YorkzbMATHGoogle Scholar
  7. Bartlett MS (1948) External and internal factor analysis. Br J Psychol 1:73–81Google Scholar
  8. Beaton D, Dunlop J, Abdi H, ADNI (2016) Partial least squares correspondence analysis: a framework to simultaneously analyze behavioral and genetic data. Psychol Methods 21:621–651CrossRefGoogle Scholar
  9. Bookstein F (1994) Partial least squares: a dose response model for measurement in the behavioral and brain sciences. Psycoloquy 5(23)Google Scholar
  10. Bretherton CS, Smith C, Wallace JM (1992) An intercomparison of methods for finding coupled patterns in climate data. J Clim 5:541–560CrossRefGoogle Scholar
  11. Dolédec S, Chessel D (1994) Co-inertia analysis: an alternative method for studying species-environment relationships. Freshw Biol 31:277–294CrossRefGoogle Scholar
  12. Fortier JJ (1966) Simultaneous linear prediction. Psychometrika 31:369–381MathSciNetzbMATHCrossRefGoogle Scholar
  13. Gittins R (2012) Canonical analysis: a review with applications in ecology. Springer Verlag, New YorkzbMATHGoogle Scholar
  14. Greenacre MJ (1984) Theory and applications of correspondence analysis. Academic Press, LondonzbMATHGoogle Scholar
  15. Grellmann C, Bitzer S, Neumann J, Westlye LT, Andreassen OA, Villringer A, Horstmann A (2015) Comparison of variants of canonical correlation analysis and partial least squares for combined analysis of MRI and genetic data. NeuroImage 107:289–310CrossRefGoogle Scholar
  16. Horst P (1961) Relations among m sets of measures. Psychometrika 26:129–149MathSciNetzbMATHCrossRefGoogle Scholar
  17. Hotteling H (1935) The most predicable criterion. J Educ Psychol 26:139–142CrossRefGoogle Scholar
  18. Hotteling H (1936) Relation between two sets of variates. Biometrika 28:321–377CrossRefGoogle Scholar
  19. Krishnan A, Williams LJ, McIntosh AR, Abdi H (2010) Partial least squares (PLS) methods for neuroimaging: a tutorial and review. NeuroImage 56:455–475CrossRefGoogle Scholar
  20. Mardia KV, Kent JT, Bibby JM (1980) Multivariate analysis. Academic Press, LondonzbMATHGoogle Scholar
  21. McIntosh AR, Bookstein FL, Haxby JV, Grady CL (1996) Spatial pattern analysis of functional brain images using partial least squares. NeuroImage 3:143–157CrossRefGoogle Scholar
  22. Mitteroecker P, Cheverud JM, Pavlicev M (2016) Multivariate analysis of genotype-phenotype association. Genetics.  https://doi.org/10.1534/genetics.115.181339
  23. Rao CR (1964) The use and interpretation of principal component analysis in applied research. Sankhyā A26:329–358MathSciNetzbMATHGoogle Scholar
  24. Takane Y (2013) Constrained principal component analysis and related techniques. CRC Press, Boca RatonzbMATHGoogle Scholar
  25. Tenenhaus M (1998) La régression PLS: théorie et pratique. Editions Technip, PariszbMATHGoogle Scholar
  26. Tenenhaus A, Philippe C, Guillemot V, Le Cao KA, Grill J, Frouin V (2014) Variable selection for generalized canonical correlation analysis. Biostatistics 15:569–583CrossRefGoogle Scholar
  27. Tucker LR (1958) An inter-battery method of factor analysis. Psychometrika 23:111–136MathSciNetzbMATHCrossRefGoogle Scholar
  28. Van Den Wollenberg AL (1977) Redundancy analysis an alternative for canonical correlation analysis. Psychometrika 42:207–219zbMATHCrossRefGoogle Scholar
  29. von Storch H, Zwiers FW (2002) Statistical analysis in climate research. Cambridge University Press, CambridgeGoogle Scholar
  30. Witten DM, Tibshirani R, Hastie T (2009) A penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis. Biostatistics 10:515–534CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media LLC, part of Springer Nature 2018

Authors and Affiliations

  • Hervé Abdi
    • 1
  • Vincent Guillemot
    • 2
  • Aida Eslami
    • 3
  • Derek Beaton
    • 4
  1. 1.School of Behavioral and Brain SciencesThe University of Texas at DallasRichardsonUSA
  2. 2.Bioinformatics and Biostatistics HubInstitut Pasteur (IP), C3BI, USR 3756 CNRSParisFrance
  3. 3.Centre for Heart Lung InnovationUniversity of British ColumbiaVancouverCanada
  4. 4.Rotman Research InstituteBaycrest Health SciencesTorontoCanada

Section editors and affiliations

  • Suheil Khoury
    • 1
  1. 1.American University of SharjahSharjahUnited Arab Emirates