Skip to main content

Simulations

  • Reference work entry
  • First Online:
Encyclopedia of Social Network Analysis and Mining

Synonyms

In probability modeling: Monte Carlo procedures, Random sampling with pseudo-random numbers. In statistical inference: Bootstraps, (simulated) permutation tests, Markov chain Monte Carlo (MCMC)

Glossary

Beta distributions:

The general density function is \( f\left(x,\mid, \alpha,, \beta \right)=\frac{\varGamma \left(\alpha +\beta \right)}{\varGamma \left(\alpha \right)\varGamma \left(\beta \right)}{x}^{\alpha -1}{\left(1-x\right)}^{\beta -1},\,\, \)

for 0 < x < 1 (0 otherwise). We denote a beta distribution by BETA(α,  β). Shape parameters: α > 0 ,  β > 0. Note: \( \varGamma \left(1/2\right)=\sqrt{\pi } \) and, for positive integer k, Γ(k) = (k − 1)!

Bootstraping:

A method of statistical inference based on extensive simulation, often used to make confidence intervals. Takes a large number of resamples from the original data (or from a distribution suggested by them) to assess variability. Introduced by Efron (1979) and discussed in Efron and Tibshirani (1998)

...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 2,500.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bain LJ, Engelhardt M (1973) Interval estimation for the two-parameter double exponential distribution. Technometrics 15:875–887

    Article  MathSciNet  MATH  Google Scholar 

  • Basu D (1980) Randomization analysis of experimental data: the fisher randomization test. J Am Stat Assoc 75(371):575–582. JSTOR 2287648

    Article  MathSciNet  MATH  Google Scholar 

  • Bayer D, Diaconis P (1992) Trailing the dovetail shuffle to its lair. Ann Appl Probab 2(2):294–313

    Article  MathSciNet  MATH  Google Scholar 

  • Blitzstein JK, Hwang J (2015) Introduction to probability. CRC Press/Chapman Hall, New York

    MATH  Google Scholar 

  • Box GEP, Muller ME (1958) A note on the generation of random normal deviates. Ann Math Stat 29(2):610–611

    Article  MATH  Google Scholar 

  • Braun WJ, Murdoch DJ (2007) A first course in statistical programming with R. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Chib S, Greenberg E (1994) Understanding the Metropolis-Hastings algorithm. Am Stat 49:327–335

    Google Scholar 

  • Diaconis P, Holmes S, Montgomery R (2007) Dynamical bias in the coin toss. SIAM Rev 49(2):211–235. http://epubs.siam.org/doi/abs/10.1137/S0036144504446436?journalCode=siread

  • Dyson G (2012) Turing’s cathedral: the origins of the digital universe. Vintage Books, New York

    MATH  Google Scholar 

  • Efron B (1979) Bootstrap methods: another look at the jackknife. Ann Stat 7(1):126

    Article  MathSciNet  MATH  Google Scholar 

  • Efron B, Tibshirani RJ (1998) An introduction to the bootstrap. Chapman & Hall/CRC, Boca Raton

    MATH  Google Scholar 

  • Eudey TL, Kerr JD, Trumbo BE (2010) Using R to simulate permutation distributions for some elementary experimental designs. J Stat Educ 18(1). http://www.amstat.org/publications/jse/v18n1/eudey.pdf

  • Feller W (1957) Introcuction to probability theory and its applications, 2nd edn. Wiley, New York

    Google Scholar 

  • Feynman RP (1988) What do you care what other people think? W W Norton, New York

    Google Scholar 

  • Fisher RA (1935) The design of experiments. Oliver & Boyd, Edinburgh

    Google Scholar 

  • Gentle J (1998) Random number generation and Monte Carlo methods. Springer, Berlin/Heidelberg/New York

    Book  MATH  Google Scholar 

  • Grolemund G, Wickham H (2014) Hands-on programming with R. O’Reilly Media, Sebastepol

    Google Scholar 

  • Hastings WK (1970) Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57(1):97–109. JSTOR 2334940

    Article  MathSciNet  MATH  Google Scholar 

  • Kapperman RF (1975) Conditional confidence intervals for double exponential distribution parameters. Technometrics 17:233–235

    Article  MathSciNet  Google Scholar 

  • Kinney SK, Reiter JP, Reznek AP, Miranda J, Harmin R, Abowd JM (2013) Toward unrestricted public use of business microdata: The Longitudinal Business Database. Int Stat Rev 79(3):362–384

    Google Scholar 

  • Lewis PAW (1986) Graphical analysis of some pseud0-random number generators. Technical report NP-55586025, US Naval Postgraduate School, Monterrey

    Google Scholar 

  • Liu JS (2004) Monte Carlo strategies in scientific computing. Springer, Berlin/Heidelberg/New York

    Google Scholar 

  • Lunneborg CE (1999) Data analysis by resampling: concepts and applications. Duxbury, Pacific Grove

    Google Scholar 

  • Marsaglia G (1995) The Marsaglie random number CDROM, including the Diehard battery of tests of randomness. Department of Statistics, Florida State U. http://stat.fsu.edu/pub/diehard/

  • Matsumoto M, Nishimura T (1998) Mersenne twister: a 623-dimensionally equidistributed uniform pseudorandom number generator. J ACM Trans Model Comput Simul (TOMACS) 8(1):3–30

    Google Scholar 

  • Metropolis N, Rosenbluth A, Rosenbluth M, Teller A, Teller E (1953) Equations of state calculations by fast computing machines. J Chem Phys 21(6):1087–1092

    Article  Google Scholar 

  • von Neumann J (1951) Various techniques used in connection with random digits. Natl Bur Stan Appl Math Ser 12:3638. https://dornsifecms.usc.edu/assets/sites/520/docs/VonNeumann-ams12p36-38.pdf

    Google Scholar 

  • Ott RL, Longnecker M (2016) Introdution to statistical methods and data analysis, 7th edn. Cengage, Boston

    Google Scholar 

  • RAND Corporation (1955) A million random digits with 100,000 normal deviates. Free Press, Glencoe

    Google Scholar 

  • Ransey FL, Schafer DW (2002) The statistical sleuth: a course in methods of data analysis, 2nd edn. Duxbury, Pacific Grove

    Google Scholar 

  • Ross SM (1997) Introduction to probability models, 6th edn. Academic Press, San Diego

    MATH  Google Scholar 

  • Ruxton G (2006) The unequal variance t-test is an underused alternative to Student’s t-test and the MannWhitney U test. Behav Ecol 17:688–690

    Article  Google Scholar 

  • Suess EA, Trumbo BE (2010) Introduction to probability simulation and Gibbs sampling with R. Springer, Berlin/Heidelberg/New York

    Book  Google Scholar 

  • Trumbo BE (2006, 2006) Random numbers from nonrandom arithmetic, STATS. J Am Stat Assoc (46):23–27. Alexandria

    Google Scholar 

  • Venables WN, Ripley BD (2002) Modern applied statistics with S, 4th edn. Springer, Berlin/Heidelberg/New York

    Book  MATH  Google Scholar 

  • Welch BL (1947) The generalization of “Student’s” problem when several different population variances are involved. Biometrika 34(12):28–35

    MathSciNet  MATH  Google Scholar 

  • Wichura MS (1988) Algorithm AS 241: the percentage points of the normal distribution. J R Stat Soc Ser C 57(3):477–484

    Google Scholar 

  • Yang Y (2012) Quantum computing and quantum information. Stat Sci 27(3):373–394

    Article  Google Scholar 

Download references

Acknowledgments

Several of the examples and figures here are adapted from material in the first three chapters of Suess and Trumbo (2010) and in Trumbo (2006). Our perspectives on simulation have been influenced by Braun and Murdoch (2007), Blitzstein and Hwang (2015), Grolemund and Wickham (2014), Gentle (1998), and Venables and Ripley (2002). We thank colleagues, current and former students, three anonymous referees, and our associate editor for useful suggestions.

The simulations in this article used R statistical software (open-source software available without cost from www.r-project.org for use on Windows, Macintosh, or UNIX operating systems). We hope our descriptions and examples of code are sufficiently clear that readers could repeat our simulations using other software. Python open-source software may be the most convenient alternative. Commercial software such as Mathematica, SAS, and Excel can also do simulations, but they may lack analogues of the specialized functions for probability and statistics we have used.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce E. Trumbo .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Trumbo, B.E., Suess, E.A. (2018). Simulations. In: Alhajj, R., Rokne, J. (eds) Encyclopedia of Social Network Analysis and Mining. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-7131-2_110189

Download citation

Publish with us

Policies and ethics