Encyclopedia of Social Network Analysis and Mining

2018 Edition
| Editors: Reda Alhajj, Jon Rokne

Sentiment Analysis of Microblogging Data

  • Pierpaolo Basile
  • Valerio Basile
  • Malvina Nissim
  • Nicole Novielli
  • Viviana Patti
Reference work entry
DOI: https://doi.org/10.1007/978-1-4939-7131-2_110168

Synonyms

Glossary

Microblogging

Broadcast messaging where posts are constrained to a specific size, e.g., Twitter (140 characters per message)

NLP

Natural language processing, the area of computer science that studies natural language by computational means

Polarity

The characteristic of a subjective message of conveying a positive or negative sentiment. Polarity is typically represented either by discrete classes (e.g., positive, negative, neutral) or on a continuous scale of sentiment ranging from negative to positive

Sentiment analysis

The study of opinion and emotions expressed in natural language

Definition

Sentiment analysis is the task of identifying the subjectivity (neutral vs. emotionally loaded) and the polarity (positive vs. negative semantic orientation) of a text, by exploiting natural language processing, text analysis, and computational linguistics. Sentiment analysis is typically adopted to mine and classify customers’ reviews and...

This is a preview of subscription content, log in to check access.

Notes

Acknowledgments

This work is partially funded by the project “EmoQuest – Investigating the Role of Emotions in Online Question & Answer Sites,” funded by MIUR (Ministero dellUniversita’ e della Ricerca) under the program “Scientific Independence of young Researchers” (SIR 2014) and the project “Multilingual Entity Liking” funded by the Apulia Region under the program FutureInResearch.

References

  1. Abbott R, Walker M, Anand P, Fox Tree JE, Bowmani R, King J (2011) How can you say such things?!?: recognizing disagreement in informal political argument. In: Proceedings of the workshop on languages in social media, LSM ‘11, pp 2–11. Association for Computational Linguistics, StroudsburgGoogle Scholar
  2. Arnold MB (1960) Emotion and personality, vol 1. Columbia University Press, New YorkGoogle Scholar
  3. Asur S, Huberman BA (2010) Predicting the future with social media. In: Proceedings of the 2010 IEEE/WIC/ACM international conference on web intelligence and intelligent agent technology – vol 01, WI-IAT ‘10, pp 492–499. IEEE Computer Society, Washington, DC.  https://doi.org/10.1109/WI-IAT.2010.63
  4. Attardo S (2000) Irony as relevant inappropriateness. J Pragmat 32(6):793–826CrossRefGoogle Scholar
  5. Bamman D, Smith NA (2015) Contextualized sarcasm detection on twitter. In: Proceedings of the ninth international conference on web and social media, ICWSM 2015, pp 574–577. AAAI, OxfordGoogle Scholar
  6. Barbieri F, Saggion H, Ronzano F (2014) Modelling sarcasm in twitter, a novel approach. In: Proceedings of the 5th workshop on computational approaches to subjectivity, sentiment and social media analysis, pp 50–58. Association for Computational Linguistics, BaltimoreGoogle Scholar
  7. Basile V, Nissim M (2013) Sentiment analysis on Italian tweets. In: Proceedings of WASSA 2013, Atlanta. pp 100–107Google Scholar
  8. Basile P, Novielli N (2014) UNIBA at EVALITA 2014-SENTIPOLC task: predicting tweet sentiment polarity combining micro-blogging, lexicon and semantic features. In: Proceedings of EVALITA 2014, Pisa. pp 58–63Google Scholar
  9. Basile V, Bolioli A, Nissim M, Patti V, Rosso P (2014) Overview of the Evalita 2014 SENTIment POLarity classification task. In: Proceedings of EVALITA 2014, pp 50–57. Pisa University Press, PisaGoogle Scholar
  10. Basile P, Basile V, Nissim M, Novielli N (2015a) Deep tweets: from entity linking to sentiment analysis. In: Proceedings of CLiC-it 2015, Trento, Italy. p 41Google Scholar
  11. Basile P, Basile V, Nissim M, Novielli N (2015b) Deep tweets: from entity linking to sentiment analysis. CLiC-it, Trento, Italy. p 41Google Scholar
  12. Basile V, Cabrio E, Villata S, Frasson C, Gandon F (2016) A pragma-semantic analysis of the emotion/sentiment relation in debates. In: 4th international workshop on artificial intelligence and cognition. New YorkGoogle Scholar
  13. Batra S, Rao D (2010) Entity based sentiment analysis on twitter. Science 9(4):1–12Google Scholar
  14. Bhatt R, Chaoji V, Parekh R (2010) Predicting product adoption in large-scale social networks. In: Proceedings of the 19th ACM international conference on information and knowledge management, CIKM ‘10, pp 1039–1048. ACM, New York.  https://doi.org/10.1145/1871437.1871569
  15. Bosco C, Patti V, Bolioli A (2013) Developing corpora for sentiment analysis: the case of irony and senti-tut. IEEE Intell Syst 28(2):55–63CrossRefGoogle Scholar
  16. Brun C, Popa ND, Roux C (2014) Xrce: hybrid classification for aspect-based sentiment analysis. In: Proceedings of the 8th international workshop on semantic evaluation (SemEval 2014), pp 838–842. Association for Computational Linguistics. Dublin, Ireland. http://aclweb.org/anthology/S14-2149
  17. Brun C, Perez J, Roux C (2016) Xrce at semeval-2016 task 5: feedbacked ensemble modeling on syntactico-semantic knowledge for aspect based sentiment analysis. In: Proceedings of the 10th international workshop on semantic evaluation (SemEval 2016), pp 277–281. Association for Computational Linguistics. San Diego, CaliforniaGoogle Scholar
  18. Brychcın T, Konkol M, Steinberger J (2014) Uwb: machine learning approach to aspect-based sentiment analysis. In: Proceedings of the 8th international workshop on semantic evaluation (SemEval 2014), pp 817–822. Association for Computational Linguistics. Dublin, Ireland. http://aclweb.org/anthology/S14-2145
  19. Buschmeier K, Cimiano P, Klinger R (2014) An impact analysis of features in a classification approach to irony detection in product reviews. In: Proceedings of the 5th workshop on computational approaches to subjectivity, sentiment and social media analysis, pp 42–49. Association for Computational Linguistics, BaltimoreGoogle Scholar
  20. Carofiglio V, Rosis Fd, Novielli N (2009) Cognitive emotion modeling in natural language communication. In: Tao J, Tan T (eds) Affective information processing. Springer, London, pp 23–44CrossRefGoogle Scholar
  21. Carrillo de Albornoz J, Plaza L, Gervas P (2012) Sentisense: an easily scalable concept-based affective lexicon for sentiment analysis. In: Proceedings of the eight international conference on language resources and evaluation (LREC’12), pp 3562–3567. European Language Resources Association (ELRA), IstanbulGoogle Scholar
  22. Carvalho P, Sarmento L, Silva MJ, de Oliveira E (2009) Clues for detecting irony in user-generated contents: Oh...!! it’s “so easy” ;-). In: Proceedings of the 1st international CIKM workshop on topic-sentiment analysis for mass opinion, TSA ‘09, pp 53–56. ACM, New YorkGoogle Scholar
  23. Choudhury MD, Monroy-Hernandez A, Mark G (2015) “Narco” emotions: affect and desensitization in social media during the Mexican drug war. CoRR abs/1507.01287. http://arxiv.org/abs/1507.01287
  24. Clore GL, Ortony A, Foss MA (1987) The psychological foundations of the affective lexicon. J Pers Soc Psychol 53(4):751–766CrossRefGoogle Scholar
  25. Colbaugh R, Glass K (2010) Estimating sentiment orientation in social media for intelligence monitoring and analysis. In: Intelligence and Security Informatics (ISI), 2010 I.E. international conference on, Canada. pp 135–137. IEEEGoogle Scholar
  26. Davidov D, Tsur O, Rappoport A (2010) Semi-supervised recognition of sarcastic sentences in twitter and amazon. In: Proceedings of the fourteenth conference on computational natural language learning, CoNLL ‘10, pp 107–116. Association for Computational Linguistics, UppsalaGoogle Scholar
  27. De Choudhury M, Counts S (2013) Understanding affect in the workplace via social media. In: Proceedings of the 2013 conference on computer supported cooperative work, CSCW ‘13, pp 303–316. ACM, New York.  https://doi.org/10.1145/2441776.2441812
  28. De Choudhury M, Counts S, Horvitz E (2013) Predicting postpartum changes in emotion and behavior via social media. In: Proceedings of the SIGCHI conference on human factors in computing systems, CHI ‘13, pp 3267–3276. ACM, New York.  https://doi.org/10.1145/2470654.2466447
  29. Djemili S, Longhi J, Marinica C, Kotzinos D, Sarfati GE (2014) What does twitter have to say about ideology? In: NLP 4 CMC: natural language processing for computer-mediated communication/social media-pre-conference workshop at Konvens 2014, vol 1. Universitätsverlag, HildesheimGoogle Scholar
  30. Ekman P (1992) An argument for basic emotions. Cognit Emot 6(3–4):169–200CrossRefGoogle Scholar
  31. Esuli A, Sebastiani F (2006) Sentiwordnet: a publicly available lexical resource for opinion mining. In: Proceedings of LREC, Italy. pp 417–422Google Scholar
  32. Faulkner AR (2014) Automated classification of argument stance in student essays: a linguistically motivated approach with an application for supporting argument summarization. In: Proceedings of the twenty-seventh international Florida artificial intelligence research society conference. Florida, USAGoogle Scholar
  33. Fellbaum C (1998) WordNet: an electronic lexical database. Bradford Books. Cambridge, MassachusettsGoogle Scholar
  34. Filatova E (2012) Irony and Sarcasm: corpus generation and analysis using crowdsourcing. In: Proceedings of the eighth international conference on language resources and evaluation (LREC-2012), pp 392–398. European Language Resources Association (ELRA), IstanbulGoogle Scholar
  35. Gamon M, Aue A, Corston-Oliver S, Ringger E (2005) Pulse: mining customer opinions from free text. In: Proceedings of the 6th international conference on advances in intelligent data analysis, IDA’05, pp 121–132. Springer, Berlin. https://doi.org/10.1007/11552253 12Google Scholar
  36. Ganu G, Kakodkar Y, Marian A (2013) Improving the quality of predictions using textual information in online user reviews. Inf Syst 38(1):1–15.  https://doi.org/10.1016/j.is.2012.03.001CrossRefGoogle Scholar
  37. Ghosh A, Li G, Veale T, Rosso P, Shutova E, Barnden J, Reyes A (2015a) Semeval-2015 task 11: sentiment analysis of figurative language in twitter. In: Proceedings of the 9th international workshop on semantic evaluation (SemEval 2015), pp 470–478. Association for Computational Linguistics, DenverGoogle Scholar
  38. Ghosh A, Li G, Veale T, Rosso P, Shutova E, Reyes A, Barnden J (2015b) Semeval-2015 task 11: sentiment analysis of figurative language in twitter. In: Proceedings of the 9th international workshop on semantic evaluation (SemEval 2015), pp 470–475. Association for Computational Linguistics, Denver. http://www.aclweb.org/anthology/S14-2004
  39. Gonzalez-Iban~ez R, Muresan S, Wacholder N (2011) Identifying sarcasm in twitter: a closer look. In: Proceedings of the 49th annual meeting of the association for computational linguistics: human language technologies, HLT ‘11, pp 581–586. Association for Computational Linguistics, PortlandGoogle Scholar
  40. Grosse K, Gonzalez MP, Chesne~var CI, Maguitman AG (2015) Integrating argumentation and sentiment analysis for mining opinions from twitter. AI Commun 28(3):387–401.  https://doi.org/10.3233/AIC-140627MathSciNetCrossRefzbMATHGoogle Scholar
  41. Guo S, Chang MW, Kiciman E (2013) To link or not to link? A study on end-to-end tweet entity linking. In: Proceedings of the 2013 conference of the North American chapter of the association for computational linguistics: human language technologies, pp 1020–1030. Association for Computational Linguistics, AtlantaGoogle Scholar
  42. Guzman E, Alkadhi R, Seyff N (2016) A needle in a haystack: what do twitter users say about software? In: 24nd IEEE international requirements engineering conference (RE’16). Beijing, ChinaGoogle Scholar
  43. Hamdan H, Bellot P, Bechet F (2015) Lsislif: Crf and logistic regression for opinion target extraction and sentiment polarity analysis. In: Proceedings of the 9th international workshop on semantic evaluation (SemEval 2015), pp 753–758. Association for Computational Linguistics. Denver, Colorado. http://aclweb.org/anthology/S15-2128
  44. Hernandez Farias I, Benedi JM, Rosso P (2015) Applying basic features from sentiment analysis for automatic irony detection. In: Pattern recognition and image analysis. Lecture notes in computer science, vol 9117. Springer International Publishing, Santiago de Compostela, pp 337–344Google Scholar
  45. Hernandez Farıas I, Patti V, Rosso P (2016) Irony detection in twitter: the role of affective content. ACM Trans Internet Technol 16(3):19:1–19:24Google Scholar
  46. Hu M, Liu B (2004) Mining and summarizing customer reviews. In: Proceedings of the tenth ACM SIGKDD international conference on knowledge discovery and data mining, Seattle, WA, USA. pp 168–177Google Scholar
  47. Jansen BJ, Zhang M, Sobel K, Chowdury A (2009) Twitter power: tweets as electronic word of mouth. J Am Soc Inf Sci Technol 60(11):2169–2188CrossRefGoogle Scholar
  48. Joshi A, Sharma V, Bhattacharyya P (2015) Harnessing context incongruity for sarcasm detection. In: Proceedings of the 53rd annual meeting of the association for computational linguistics and the 7th international joint conference on natural language processing (vol 2: Short papers), pp 757–762. Association for Computational Linguistics, BeijingGoogle Scholar
  49. Karoui J, Benamara F, Moriceau V, Aussenac-Gilles N, Belguith LH (2015a) Towards a contextual pragmatic model to detect irony in tweets. In: Proceedings of the 53rd annual meeting of the association for computational linguistics and the 7th international joint conference on natural language processing of the Asian Federation of natural language processing, ACL 2015, July 26–31, 2015, Beijing, vol 2: Short papers, pp 644–650. http://aclweb.org/anthology/P/P15/P15-2106.pdf
  50. Karoui J, Benamara F, Moriceau V, Aussenac-Gilles N, Hadrich-Belguith L (2015b) Towards a contextual pragmatic model to detect irony in tweets. In: Proceedings of the 53rd annual meeting of the association for computational linguistics and the 7th international joint conference on natural language processing (vol 2: Short papers), pp 644–650. Association for Computational Linguistics, BeijingGoogle Scholar
  51. Khalil T, El-Beltagy SR (2016) Niletmrg at semeval-2016 task 5: deep convolutional neural networks for aspect category and sentiment extraction. In: Proceedings of the 10th international workshop on semantic evaluation (SemEval 2016), pp 271–276. Association for Computational Linguistics. San Diego, CaliforniaGoogle Scholar
  52. Kiritchenko S, Zhu X, Cherry C, Mohammad S (2014) Nrc-canada-2014: detecting aspects and sentiment in customer reviews. In: Proceedings of the 8th international workshop on semantic evaluation (SemEval 2014), pp 437–442. Association for Computational Linguistics. Dublin, Ireland. http://aclweb.org/anthology/S14-2076
  53. Kiritchenko S, Mohammad S, Salameh M (2016) Semeval-2016 task 7: determining sentiment intensity of English and Arabic phrases. In: Proceedings of the 10th international workshop on semantic evaluation (SemEval-2016), pp 42–51. Association for Computational Linguistics, San Diego. http://www.aclweb.org/anthology/S16-1004
  54. Kumar S, Barbier G, Abbasi MA, Liu H (2011) Tweettracker: an analysis tool for humanitarian and disaster relief. In: ICWSM. BarcelonaGoogle Scholar
  55. Kunneman F, Liebrecht C, van Mulken M, van den Bosch A (2015) Signaling sarcasm: from hyperbole to hashtag. Inf Process Manag 51(4):500–509CrossRefGoogle Scholar
  56. Lazarus RS (1991) Emotion and adaptation. Oxford University Press, New YorkGoogle Scholar
  57. Lukin S, Walker M (2013) Really? well. apparently bootstrapping improves the performance of sarcasm and nastiness classifiers for online dialogue. In: Proceedings of the workshop on language analysis in social media, pp 30–40. Association for Computational Linguistics, AtlantaGoogle Scholar
  58. Michael J, Paul MD (2011) You are what you tweet: analyzing twitter for public health. In: Proceedings of the fifth international AAAI conference on weblogs and social media, Barcelona. pp 265–272Google Scholar
  59. Mikolov T, Chen K, Corrado G, Dean J (2013) Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781Google Scholar
  60. Mohammad SM, Turney PD (2010) Emotions evoked by common words and phrases: using mechanical turk to create an emotion Lexicon. In: Proceedings of the NAACL HLT 2010 workshop on computational approaches to analysis and generation of emotion in text, CAAGET ‘10, Los Angels CA. pp 26–34Google Scholar
  61. Mohammad S, Kiritchenko S, Sobhani P, Zhu X, Cherry C (2016a) A dataset for detecting stance in tweets. In: N.C.C. (Chair), Choukri K, Declerck T, Goggi S, Grobelnik M, Maegaard+ B, Mariani J, Mazo H, Moreno A, Odijk J, Piperidis S (eds) Proceedings of the tenth international conference on language resources and evaluation (LREC 2016). European Language Resources Association (ELRA), ParisGoogle Scholar
  62. Mohammad SM, Kiritchenko S, Sobhani P, Zhu X, Cherry C (2016b) Semeval-2016 task 6: detecting stance in tweets. In: Proceedings of the international workshop on semantic evaluation, SemEval ‘16. San DiegoGoogle Scholar
  63. Mohammad SM, Sobhani P, Kiritchenko S (2016c) Stance and sentiment in tweets. arXiv preprint arXiv:1605.01655Google Scholar
  64. Nakov P, Rosenthal S, Kozareva Z, Stoyanov V, Ritter A, Wilson T (2013) Semeval-2013 task 2: sentiment analysis in twitter. In: Second joint conference on lexical and computational semantics (*SEM), vol 2: Proceedings of the seventh international workshop on semantic evaluation (SemEval 2013), pp 312–320. Association for Computational Linguistics, Atlanta. http://www.aclweb.org/anthology/S13-2052
  65. Nakov P, Ritter A, Rosenthal S, Sebastiani F, Stoyanov V (2016) Semeval-2016 task 4: sentiment analysis in twitter. In: Proceedings of the 10th international workshop on semantic evaluation (SemEval-2016), pp 1–18. Association for Computational Linguistics, San Diego. http://www.aclweb.org/anthology/W/W05/W05-0201
  66. Nielsen FA: Afinn (2011). http://www2.imm.dtu.dk/pubdb/p.php?6010
  67. Nissim M, Patti V (2017) Semantic aspects in sentiment analysis, chap. 3. In: Pozzi FA, Fersini E, Messina E, Liu B (eds) Sentiment analysis in social networks. Morgan Kaufmann, pp 31–48.  https://doi.org/10.1016/B978-0-12-804412-400003-6. http://www.sciencedirect.com/science/article/pii/B9780128044124000036
  68. O’Connor B, Balasubramanyan R, Routledge B, Smith N (2010) From tweets to polls: linking text sentiment to public opinion time series. In: International AAAI conference on weblogs and social media (ICWSM), vol 11, Washington, DC. pp 122–129Google Scholar
  69. Osborne M, Moran S, McCreadie R, Von Lunen A, Sykora MD, Cano E, Ireson N, Macdonald C, Ounis I, He Y et al (2014) Real-time detection, tracking, and monitoring of automatically discovered events in social media. In: Proceedings of ACL 2014: system demonstrations, pp 37–42. Association for Computational Linguistics. BaltimoreGoogle Scholar
  70. Pak A, Paroubek P (2010) Twitter as a corpus for sentiment analysis and opinion mining. In: Proceedings of the seventh international conference on language resources and evaluation (LREC’10). MaltaGoogle Scholar
  71. Pang B, Lee L (2008) Opinion mining and sentiment analysis. Found Trends Inf Retr 2(1–2):1–135CrossRefGoogle Scholar
  72. Parrot WG (2001) Emotions in social psychology: essential readings. Psychology Press, PhiladelphiaGoogle Scholar
  73. Pennebaker JW, Francis ME, Booth RJ (2001) Linguistic inquiry and word count: LIWC 2001. Lawrence Erlbaum Associates, MahwahGoogle Scholar
  74. Picard RW (1997) Affective computing. MIT Press, Cambridge, MACrossRefGoogle Scholar
  75. Plutchik R (1980) A general psychoevolutionary theory of emotion. In: Plutchik R, Kellerman H (eds) Emotion: theory, research, and experience: vol 1. Theories of emotion. Academic, New York, pp 3–33Google Scholar
  76. Pontiki M, Galanis D, Pavlopoulos J, Papageorgiou H, Androutsopoulos I, Manandhar S (2014) Semeval-2014 task 4: aspect based sentiment analysis. In: Proceedings of the 8th international workshop on semantic evaluation (SemEval 2014), pp 27–35. Association for Computational Linguistics. Dublin, Ireland. http://aclweb.org/anthology/S14-2004
  77. Pontiki M, Galanis D, Papageorgiou H, Manandhar S (2015) I.: Semeval-2015 task 12: Aspect based sentiment analysis. In: Proceedings of the 9th international workshop on semantic evaluation (SemEval 2015), pp 486–495. Association for Computational Linguistics, Denver. http://www.aclweb.org/anthology/S15-2082
  78. Pontiki M, Galanis D, Papageorgiou H, Androutsopoulos I, Manandhar S, AL-Smadi M, Al-Ayyoub M, Zhao Y, Qin B, De Clercq O, Hoste V, Apidianaki M, Tannier X, Loukachevitch N, Kotelnikov E, Bel N, Jimenez-Zafra SM, Eryiit G (2016) Semeval-2016 task 5: aspect based sentiment analysis. In: Proceedings of the 10th international workshop on semantic evaluation (SemEval 2016), pp 19–30. Association for Computational Linguistics San Diego, CaliforniaGoogle Scholar
  79. Pozzi F, Fersini E, Messina E, Liu B (2017) Chapter 1 – challenges of sentiment analysis in social networks: an overview. In: Pozzi FA, Fersini E, Messina E, Liu B (eds) Sentiment analysis in social networks. Morgan Kaufmann, Boston, pp 1–11.  https://doi.org/10.1016/B978-0-12-804412-4.00001-2. http://www.sciencedirect.com/science/article/pii/B9780128044124000012
  80. Ptacek T, Habernal I, Hong J (2014) Sarcasm detection on Czech and English twitter. In: Proceedings of COLING 2014, the 25th international conference on computational linguistics, pp 213–223. Dublin City University and Association for Computational Linguistics, DublinGoogle Scholar
  81. Rajadesingan A, Liu H (2014) Identifying users with opposing opinions in twitter debates. In: International conference on social computing, behavioral-cultural modeling, and prediction, pp 153–160. Springer International Publishing. Washington DC, USAGoogle Scholar
  82. Rajadesingan A, Zafarani R, Liu H (2015) Sarcasm detection on twitter: a behavioral modeling approach. In: Proceedings of the eighth ACM international conference on web search and data mining, WSDM ‘15, pp 97–106. ACM, ShanghaiGoogle Scholar
  83. Reyes A, Rosso P (2014) On the difficulty of automatically detecting irony: beyond a simple case of negation. Knowl Inf Syst 40(3):595–614CrossRefGoogle Scholar
  84. Reyes A, Rosso P, Veale T (2013) A multidimensional approach for detecting irony in twitter. Lang Resour Eval 47(1):239–268CrossRefGoogle Scholar
  85. Riloff E, Qadir A, Surve P, Silva LD, Gilbert N, Huang R (2013) Sarcasm as contrast between a positive sentiment and negative situation. In: Proceedings of the 2013 conference on empirical methods in natural language processing, (EMNLP 2013), pp 704–714. Association for Computational Linguistics, SeattleGoogle Scholar
  86. Rizzo G, Cano Basave AE, Pereira B, Varga A, Rowe M, Stankovic M, Dadzie A (2015) Making sense of Microposts Named Entity rEcognition and Linking (NEEL) challenge. In: Proceedings of the 5th workshop on making sense of Microposts co-located with the 24th international World Wide Web conference (WWW 2015), vol 1395. CEUR. Aachen, GermanyGoogle Scholar
  87. Rosenthal S, Ritter A, Nakov P, Stoyanov V (2014) SemEval-2014 Task 9: sentiment analysis in Twitter. In: Proceedings of the 8th international workshop on semantic evaluation (SemEval 2014), pp 73–80. Dublin. http://www.aclweb.org/anthology/S14-2009
  88. Rosenthal S, Nakov P, Kiritchenko S, Mohammad SM, Ritter A, Stoyanov V (2015) SemEval-2015 Task 10: Sentiment analysis in Twitter. In: Proceedings of the 9th international workshop on semantic evaluation, SemEval ‘2015, DenverGoogle Scholar
  89. Ruder S, Ghaffari P, Breslin JG (2016) Insight-1 at semeval-2016 task 5: deep learning for multilingual aspect-based sentiment analysis. In: Proceedings of the 10th international workshop on semantic evaluation (SemEval 2016), pp 330–336. Association for Computational Linguistics. San Diego, CaliforniaGoogle Scholar
  90. Russell JA (1980) A circumplex model of affect. J Pers Soc Psychol 39:1161–1178CrossRefGoogle Scholar
  91. Shutova E (2010) Models of metaphor in nlp. In: Proceedings of the 48th Annual meeting of the association for computational linguistics, ACL ‘10, pp 688–697. Association for Computational Linguistics, StroudsburgGoogle Scholar
  92. Somasundaran S, Wiebe J (2010) Recognizing stances in ideological on-line debates. In: Proceedings of the NAACL HLT 2010 workshop on computational approaches to analysis and generation of emotion in text, pp 116–124. Association for Computational Linguistics. Los Angels, CAGoogle Scholar
  93. Starbird K, Palen L (2012) (how) will the revolution be retweeted?: Information diffusion and the 2011 Egyptian uprising. In: Proceedings of the ACM 2012 conference on computer supported cooperative work, CSCW ‘12, pp 7–16. ACM, New YorkGoogle Scholar
  94. Stranisci M, Bosco C, Faras DIH, Patti V (2016) Annotating sentiment and irony in the online italian political debate on #labuonascuola. In: N.C.C. (Chair), Choukri K, Declerck T, Grobelnik M, Maegaard B, Mariani J, Moreno A, Odijk J, Piperidis S (eds) Proceedings of the tenth international conference on language resources and evaluation (LREC 2016). European Language Resources Association (ELRA), ParisGoogle Scholar
  95. Strapparava C, Mihalcea R (2007) SemEval-2007 task 14: affective text. In: Proceedings of the 4th international workshop on semantic evaluations, SemEval ‘07, pp 70–74. Association for Computational Linguistics, StroudsburgGoogle Scholar
  96. Strapparava C, Valitutti A (2004) WordNet-Affect: an affective extension of WordNet. In: Proceedings of the International conference on language resources and evaluation (LREC’04), vol 4, pp 1083–1086. European Language Resources Association (ELRA). Reykjavik, IcelandGoogle Scholar
  97. Su J, Toh Z (2016) Nlangp at semeval-2016 task 5: improving aspect based sentiment analysis using neural network features. In: Proceedings of the 10th international workshop on semantic evaluation (SemEval 2016), pp 282–288. Association for Computational LinguisticsGoogle Scholar
  98. Sulis E, Hernandez Farıas I, Rosso P, Patti V, Ruffo G (2016) Figurative messages and affect in twitter: differences between #irony, #sarcasm and #not. Knowl-Based Syst 108:132–143. 10.1016/j.knosys.2016.05.035. New avenues in knowledge bases for natural language processingGoogle Scholar
  99. Sykora MD, Jackson TW, OBrien A, Elayan S (2013) National security and social media monitoring: a presentation of the EMOTIVE and related systems. In: Intelligence and security informatics conference (EISIC), 2013 European, pp 172–175. IEEE. Uppsala, SwedenGoogle Scholar
  100. Taboada M, Brooke J, Tofiloski M, Voll K, Stede M (2011) Lexicon-based methods for sentiment analysis. Comput Linguist 37(2):267–307CrossRefGoogle Scholar
  101. Tang YJ, Chen HH (2014) Chinese irony corpus construction and ironic structure analysis. In: Proceedings of COLING 2014, the 25th international conference on computational linguistics, pp 1269–1278. Association for Computational Linguistics, DublinGoogle Scholar
  102. Tapia AH, Bajpai K, Jansen BJ, Yen J, Giles L (2011) Seeking the trustworthy tweet: can microblogged data fit the information needs of disaster response and humanitarian relief organizations. In: Proceedings of the 8th international ISCRAM conference, Lisbon, Portugal. pp 1–10Google Scholar
  103. Thelwall M, Buckley K, Paltoglou G (2012) Sentiment strength detection for the social web. J Am Soc Inf Sci Technol 63(1):163–173.  https://doi.org/10.1002/asi.21662.URLCrossRefGoogle Scholar
  104. Thet TT, Na JC, Khoo CS (2010) Aspect-based sentiment analysis of movie reviews on discussion boards. J Inf Sci 36(6):823–848.  https://doi.org/10.1177/0165551510388123CrossRefGoogle Scholar
  105. Toh Z, Wang W (2014) Dlirec: aspect term extraction and term polarity classification system. In: Proceedings of the 8th international workshop on semantic evaluation (SemEval 2014), pp 235–240. Association for Computational Linguistics. http://aclweb.org/anthology/S14-2038
  106. Tromp E, Pechenizkiy M (2014) Rule-based emotion detection on social media: putting tweets on Plutchik’s wheel. CoRR abs/1412.4682. http://arxiv.org/abs/1412.4682
  107. Tumasjan A, Sprenger T, Sandner P, Welpe I (2010) Predicting elections with twitter: what 140 characters reveal about political sentiment. In: International AAAI conference on web and social media. CanadaGoogle Scholar
  108. Valitutti R, Stock O (2006) The affective weight of lexicon. In: Proceedings of the fifth international conference on language resources and evaluation. ItalyGoogle Scholar
  109. Villena-Roman J, Garcıa-Morera J, Cumbreras MA G, Martınez-Camara E, MartınValdivia MT, Lopez LAU (2015) Overview of TASS 2015. In: Villena-Roman J, Garcıa-Morera J, Cumbreras MAG, Martınez-Camara E, Martın-Valdivia MT, Lopez LAU (eds) Proceedings of TASS 2015: workshop on sentiment analysis at SEPLN co-located with 31st SEPLN conference (SEPLN 2015), Alicante, Sept 15, 2015. CEUR workshop proceedings, vol 1397, pp 13–21. CEUR-WS.org. http://ceur-ws.org/Vol-1397/overview.pdf
  110. Wagner J, Arora P, Cortes S, Barman U, Bogdanova D, Foster J, Tounsi L (2014) Dcu: aspect-based polarity classification for Semeval task 4. In: Proceedings of the 8th international workshop on semantic evaluation (SemEval 2014), pp 223–229. Association for Computational Linguistics. Dublin, Ireland. http://aclweb.org/anthology/S14-2036
  111. Walker MA, Anand P, Abbott R, Grant R (2012) Stance classification using dialogic properties of persuasion. In: Proceedings of the 2012 conference of the North American chapter of the association for computational linguistics: human language technologies, NAACL HLT ‘12, pp 592–596. Association for Computational Linguistics, Stroudsburg. http://dl.acm.org/citation.cfm?id=2382029.2382124
  112. Wallace BC, Choe DK, Charniak E (2015) Sparse, contextually informed models for irony detection: exploiting user communities, entities and sentiment. In: Proceedings of the 53rd annual meeting of the association for computational linguistics and the 7th international joint conference on natural language processing (vol 1: Long papers), pp 1035–1044. Association for Computational Linguistics, BeijingGoogle Scholar
  113. Wan S, Paris C (2015) Understanding public emotional reactions on twitter. In: Proceedings of the 2015 AAAI international conference on weblogs and social media (ICWSM), Oxford, UK. pp 715–716Google Scholar
  114. Wang AP (2013) #irony or #sarcasm – a quantitative and qualitative study based on twitter. In: Proceedings of the PACLIC: the 27th Pacific Asia conference on language, information, and computation, pp 349–356. Department of English, National Chengchi University, TaipeiGoogle Scholar
  115. Whissell C (2009) Using the revised Dictionary of affect in language to quantify the emotional undertones of samples of natural languages. Psychol Rep 2(105):509–521CrossRefGoogle Scholar
  116. Wiebe J, Wilson T, Cardie C (2005) Annotating expressions of opinions and emotions in language. Lang Resour Eval 1(2). http://www.cs.pitt.edu/˜wiebe/pubs/papers/lre05withappendix.pdf
  117. Wilson T, Wiebe J, Hoffmann P (2005) Recognizing contextual polarity in phrase-level sentiment analysis. In: Proceedings of the conference on human language technology and empirical methods in natural language processing, HLT ‘05, pp 347–354. Association for Computational Linguistics, Stroudsburg. 10.3115/1220575.1220619Google Scholar
  118. Xie W, Zhu F, Jiang J, Lim EP, Wang K (2013) Topicsketch: real-time bursty topic detection from twitter. In: 2013 I.E. 13th international conference on data mining, USA. pp 837–846. IEEEGoogle Scholar

Copyright information

© Springer Science+Business Media LLC, part of Springer Nature 2018

Authors and Affiliations

  • Pierpaolo Basile
    • 1
  • Valerio Basile
    • 2
  • Malvina Nissim
    • 3
  • Nicole Novielli
    • 1
  • Viviana Patti
    • 4
  1. 1.Department of Computer ScienceUniversity of Bari Aldo MoroBariItaly
  2. 2.Université Côte d’Azur, Inria, CNRSSophia AntipolisFrance
  3. 3.University of GroningenGroningenThe Netherlands
  4. 4.Department of Computer ScienceUniversity of TurinTurinItaly

Section editors and affiliations

  • Giovanni Semeraro
    • 1
  • Cataldo Musto
    • 2
  1. 1.Department of Computer ScienceUniversity of Bari "Aldo Moro"BariItaly
  2. 2.BariItaly