Encyclopedia of Social Network Analysis and Mining

2018 Edition
| Editors: Reda Alhajj, Jon Rokne

Community Structure Characterization

Reference work entry
DOI: https://doi.org/10.1007/978-1-4939-7131-2_110151

Synonyms

Glossary

Graph or network

A pair G = (V, E) constituted of a set of nodes V and a set of links E. We note n = |V| the number of nodes and m = |E| the number of links

Community structure

Partition of the node set V into a set of λ distinct communities, i.e., C = C 1 C λ Open image in new window

This is a preview of subscription content, log in to check access.

Notes

Acknowledgments

This article is supported by the Galatasaray University Research Fund (BAP) within the scope of the project number 14.401.002, and titled “Sosyal Aglarda Küme Bulma ve Anlamlandirma: Zamana Bagli Sirali Örüntü Uygulamasi.”

References

  1. Asur S, Parthasarathy S, Ucar D (2009) An event-based framework for characterizing the evolutionary behavior of interaction graphs. ACM Trans Knowl Discov Data 3(4):1–36.  https://doi.org/10.1145/1631162.1631164CrossRefGoogle Scholar
  2. Aynaud T, Fleury É, Guillaume J-L, Wang Q (2013) Communities in evolving networks: definitions, detection, and analysis techniques. In: Dynamics on and of complex networks, Modeling and simulation in science, engineering and technology, vol 2. Springer, Cambridge, pp 159–200.  https://doi.org/10.1007/978-1-4614-6729-8_9CrossRefGoogle Scholar
  3. Blondel VD, Guillaume J-L, Lambiotte R, Lefebvre E (2008) Fast unfolding of communities in large networks. Journal of Statistical Mechanics.  https://doi.org/10.1088/1742-5468/2008/10/P10008
  4. Bothorel C, Cruz JD, Magnani M, Micenkova B (2015) Clustering attributed graphs: models, measures and methods. Network Science 3:408–444.  https://doi.org/10.1017/nws.2015.9CrossRefGoogle Scholar
  5. Bródka P, Saganowski S, Kazienko P (2013) GED: the method for group evolution discovery in social networks. Soc Netw Anal Min 3(1):1–14.  https://doi.org/10.1007/s13278-012-0058-8CrossRefMATHGoogle Scholar
  6. Cai H, Zheng VW, Zhu F, Chang KC-C, Huang Z (2017) From community detection to community profiling. Proceedings of the very large database endowment. https://arxiv.org/abs/1701.04528CrossRefGoogle Scholar
  7. Chen Z, Wilson KA, Jin Y, Hendrix W, Samatova NF (2010) Detecting and tracking community dynamics in evolutionary networks. IEEE international conference on data mining workshops, pp. 318–327.  https://doi.org/10.1109/ICDMW.2010.32
  8. Clauset A, Newman MEJ, Moore C (2004) Finding community structure in very large networks. Phys Rev E 70(6):066111.  https://doi.org/10.1103/PhysRevE.70.066111CrossRefGoogle Scholar
  9. Creusefond J, Largillier T, Peyronnet S (2015) On the evaluation potential of quality functions in community detection for different contexts. Lect Notes Comput Sci 9564:111–125.  https://doi.org/10.1007/978-3-319-28361-6_9CrossRefGoogle Scholar
  10. Dugué N, Labatut V, Perez A (2015) A community role approach to assess social capitalists visibility in the twitter network. Soc Netw Anal Min 5:26.  https://doi.org/10.1007/s13278-015-0266-0.CrossRefGoogle Scholar
  11. da Fontoura Costa L, Rodrigues FA, Travieso G, Villas Boas PR (2007) Characterization of complex networks: a survey of measurements. Adv Phys 56(1):167–242.  https://doi.org/10.1080/00018730601170527CrossRefGoogle Scholar
  12. Fortunato S (2010) Community detection in graphs. Phys Rep 486(3–5):75–174.  https://doi.org/10.1016/j.physrep.2009.11.002MathSciNetCrossRefGoogle Scholar
  13. Fortunato S, Hric D (2016) Community detection in networks: a user guide. Phys Rep 659:1–44.  https://doi.org/10.1016/j.physrep.2016.09.002MathSciNetCrossRefGoogle Scholar
  14. Fortunato S, Lancichinetti A (2009). Community detection algorithms: a comparative analysis. In: 4th International ICST Conference on Performance Evaluation Methodologies and Tools, p 27. http://dl.acm.org/citation.cfm?id=1698822.1698858
  15. Fu T-C (2011) A review on time series data mining. Eng Appl Artif Intell 24(1):164–181.  https://doi.org/10.1016/j.engappai.2010.09.007CrossRefGoogle Scholar
  16. Girvan M, Newman MEJ (2002) Community structure in social and biological networks. Proceedings of the National Academy of Sciences of the USA 99(12):7821–7826. https://doi.org/10.1073/pnas. 1226539799MathSciNetCrossRefMATHGoogle Scholar
  17. Greene D, Doyle D, Cunningham P (2010) Tracking the evolution of communities in dynamic social networks. In: Advances in Social Networks Analysis and Mining (ASONAM), 2010 International Conference on, pp 176–183, 2010.  https://doi.org/10.1109/asonam.2010.17.
  18. Guimera R, Amaral LAN (2005) Cartography of complex networks: modules and universal roles. Journal of Statistical Mechanics 2005(02):P02001. https://doi.org/10.1088/1742-5468/2005/02/ p02001CrossRefGoogle Scholar
  19. Han X, Wang L, Farahbakhsh R, Cuevas Á, Cuevas R, Crespi N, He L (2016) Csd: a multi-user similarity metric for community recommendation in online social networks. Expert Syst Appl 53:14–26.  https://doi.org/10.1016/j.eswa.2016.01.003CrossRefGoogle Scholar
  20. Kashtan N, Alon U (2005) Spontaneous evolution of modularity and network motifs. Proceedings of the National Academy of Sciences of the USA 1(02):13773–13778. https://doi.org/10.1073/pnas. 0503610102.CrossRefGoogle Scholar
  21. Labatut V, Balasque J-M (2012) Detection and interpretation of communities in complex networks: Practical methods and application. In: Computational Social Networks. Springer, London, pp 81–113. https://doi.org/10.1007/978–1–4471-4048-1_4CrossRefGoogle Scholar
  22. Labatut V, Balasque J-M (2013) Informative value of individual and relational data compared through business-oriented community detection. In: The Influence of Technology on Social Network Analysis and Mining. Springer, Vienna, pp 303–330.  https://doi.org/10.1007/978-3-7091-1346-2_13CrossRefGoogle Scholar
  23. Lancichinetti A, Radicchi F, Ramasco JJ (2010a) Statistical significance of communities in networks. Physical Review E 81(4):046110.  https://doi.org/10.1103/PhysRevE.81.046110CrossRefGoogle Scholar
  24. Lancichinetti A, Kivela M, Saramaki J, Fortunato S (2010b) Characterizing the community structure of complex networks. PLoS One 5(8):e11976.  https://doi.org/10.1371/journal.pone.0011976CrossRefGoogle Scholar
  25. Leskovec J, Lang KJ, Dasgupta A, Mahoney MW (2008) Statistical properties of community structure in large social and information networks. In: 17th International Conference on World Wide Web, pp 695–704.  https://doi.org/10.1145/1367497.1367591
  26. Mabroukeh NR, Ezeife CI (2010) A taxonomy of sequential pattern mining algorithms. ACM Comput Surv 43(1):3.  https://doi.org/10.1145/1824795.1824798.CrossRefGoogle Scholar
  27. Newman MEJ (2003) Mixing patterns in networks. Phys Rev E 67:026126. https://doi.org/10.1103/ PhysRevE.67.026126.MathSciNetCrossRefGoogle Scholar
  28. Newman MEJ (2004) Detecting community structure in networks. Eur Phys J B 38(2):321–330.  https://doi.org/10.1140/epjb/e2004-00124-yCrossRefGoogle Scholar
  29. Newman MEJ (2006) Modularity and community structure in networks. Proceedings of the National Academy of Science of the USA 103(23):8577–8582.  https://doi.org/10.1073/pnas.0601602103CrossRefGoogle Scholar
  30. Newman MEJ, Clauset A (2016) Structure and inference in annotated networks. Nat Commun 7:11863.  https://doi.org/10.1038/ncomms11863CrossRefGoogle Scholar
  31. Newman MEJ, Girvan M (2004) Finding and evaluating community structure in networks. Physical Review E 69(2):026113.  https://doi.org/10.1103/PhysRevE.69.026113CrossRefGoogle Scholar
  32. Orman GK, Labatut V, Plantevit M, Boulicaut J-F (2015) Interpreting communities based on the evolution of a dynamic attributed network. Social Networks Analysis and Mining 5:20.  https://doi.org/10.1007/s13278-015-0262-4CrossRefGoogle Scholar
  33. Palla G, Barabasi A-L, Vicsek T (2007) Quantifying social group evolution. Nature 446(7136):664–667.  https://doi.org/10.1038/nature05670CrossRefGoogle Scholar
  34. Radicchi F, Castellano C, Cecconi F, Loreto V, Parisi D (2004) Defining and identifying communities in networks. Proceedings of the National Academy of Science of the USA 101(9):2658–2663.  https://doi.org/10.1073/pnas.0400054101CrossRefGoogle Scholar
  35. Rosvall M, Bergstrom CT (2007) An information-theoretic framework for resolving community structure in complex networks. Proceedings of the National Academy of Sciences of the USA 104(18):7327–7331.  https://doi.org/10.1073/pnas.0611034104CrossRefGoogle Scholar
  36. Rosvall M, Bergstrom CT (2008) Maps of random walks on complex networks reveal community structure. Proceedings of the National Academy of Science of the USA 105(4):1118.  https://doi.org/10.1073/pnas.0706851105CrossRefGoogle Scholar
  37. Shi J, Malik J (2000) Normalized cuts and image segmentation. IEEE Trans Pattern Anal Mach Intell 22(8):888–905.  https://doi.org/10.1109/34.868688CrossRefGoogle Scholar
  38. Stattner E, Collard M (2012) Social-based conceptual links: conceptual analysis applied to social networks. In: IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp 25–29.  https://doi.org/10.1109/asonam.2012.15.
  39. Stattner E, Collard M (2013) Frequent conceptual links and link-based clustering: a comparative analysis of two clustering techniques. In: IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, ACM, pp 134–141.  https://doi.org/10.1145/2492517.2492548.
  40. Tumminello M, Micciche S, Lillo F, Varho J, Piilo J, Mantegna RN (2011) Community characterization of heterogeneous complex systems. Journal of Statistical Mechanics 2011(01):P01019.  https://doi.org/10.1088/1742-5468/2011/01/P01019CrossRefGoogle Scholar
  41. Wang Y, Wu B, Du N (2008). Community evolution of social network: feature, algorithm and model. arXiv, Physics.Soc-ph:0804.4356. http://arxiv.org/abs/0804.4356
  42. Yang J, Leskovec J (2015) Defining and evaluating network communities based on ground-truth. Knowl Inf Syst 42(1):181–213.  https://doi.org/10.1007/s10115-013-0693-zCrossRefGoogle Scholar
  43. Yang J, McAuley J, Leskovec J (2013) Community detection in networks with node attributes. In: 13th IEEE International Conference on Data Mining, pp 1151–1156.  https://doi.org/10.1109/icdm.2013.167

Recommended Reading

  1. Labatut V, Balasque J-M (2012) Detection and interpretation of communities in complex networks: Practical methods and application. In: Computational Social Networks. Springer, London, pp 81–113.  https://doi.org/10.1007/978-1-4471-4048-1_4CrossRefGoogle Scholar
  2. Lancichinetti MK, Saramaki J, Fortunato S (2010) Characterizing the community structure of complex networks. PLoS One 5(8):e11976. https://doi.org/10.1371/journal.pone. 0011976CrossRefGoogle Scholar
  3. Orman GK, Labatut V, Plantevit M, Boulicaut J-F (2015) Interpreting communities based on the evolution of a dynamic attributed network. Social Networks Analysis and Mining 5:20.  https://doi.org/10.1007/s13278-015-0262-4CrossRefGoogle Scholar
  4. Palla G, Barabasi A-L, Vicsek T (2007) Quantifying social group evolution. Nature 446(7136):664–667.  https://doi.org/10.1038/nature05670CrossRefGoogle Scholar
  5. Stattner E, Collard M (2013). Frequent conceptual links and link-based clustering: a comparative analysis of two clustering techniques. In: IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, ACM, pp 134–141.  https://doi.org/10.1145/2492517.2492548

Copyright information

© Springer Science+Business Media LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratoire Informatique d’Avignon (LIA EA 4128)University of AvignonAvignonFrance
  2. 2.Engineering Faculty, Computer Engineering DepartmentGalatasaray UniversityIstanbulTurkey

Section editors and affiliations

  • Tansel Ozyer
    • 1
  • Ozgur Ulusoy
    • 2
  1. 1.TOBB Economics and Technology UniversityAnkaraTurkey
  2. 2.Bilkent UniversityAnkaraTurkey