# Computing with Solitons

• Darren Rand
• Ken Steiglitz
Reference work entry
Part of the Encyclopedia of Complexity and Systems Science Series book series (ECSSS)

## Glossary

Integrable

This term is generally used in more than one way and in different contexts. For the purposes of this article, a partial differential equation or system of partial differential equations is integrable if it can be solved explicitly to yield solitons (qv).

Manakov system

A system of two cubic Schrödinger equations where the self- and cross-phase modulation terms have equal weight.

Nonlinear Schrodinger equation

A partial differential equation that has the same form as the Schrodinger equation of quantum mechanics, with a term nonlinear in the dependent variable, and, for the purposes of this article, is interpreted classically.

Self- and cross-phase modulation

Any terms in a nonlinear Schrödinger equation that involve nonlinear functions of the dependent variable of the equation or nonlinear functions of a dependent variable of another (coupled) equation, respectively.

Solitary wave

A solitary wave is a wave characterized by undistorted propagation. Solitary waves do...

## Bibliography

1. Ablowitz MJ, Prinari B, Trubatch AD (2004) Soliton interactions in the vector nls equation. Inverse Prob 20(4):1217–1237
2. Ablowitz MJ, Prinari B, Trubatch AD (2006) Discrete vector solitons: composite solitons, Yang- Baxter maps and computation. Stud Appl Math 116:97–133
3. Agrawal GP (2001) Nonlinear fiber optics, 3rd edn. Academic, San Diego
4. Anastassiou C, Segev M, Steiglitz K, Giordmaine JA, Mitchell M, Shih MF, Lan S, Martin J (1999) Energy-exchange interactions between colliding vector solitons. Phys Rev Lett 83(12):2332–2335
5. Anastassiou C, Fleischer JW, Carmon T, Segev M, Steiglitz K (2001) Information transfer via cascaded collisions of vector solitons. Opt Lett 26(19):1498–1500
6. Barad Y, Silberberg Y (1997) Phys Rev Lett 78:3290
7. Berlekamp ER, Conway JH, Guy RK (1982) Winning ways for your mathematical plays, vol 2. Academic [Harcourt Brace Jovanovich Publishers], London
8. Cao XD, McKinstrie CJ (1993) J Opt Soc Am B 10:1202
9. Chen ZG, Segev M, Coskun TH, Christodoulides DN (1996) Observation of incoherently coupled photorefractive spatial soliton pairs. Opt Lett 21(18):1436–1438
10. Christodoulides DN, Joseph RI (1988) Discrete self-focusing in nonlinear arrays of coupled waveguides. Opt Lett 13:794–796
11. Christodoulides DN, Singh SR, Carvalho MI, Segev M (1996) Incoherently coupled soliton pairs in biased photorefractive crystals. Appl Phys Lett 68(13):1763–1765
12. Cundiff ST, Collings BC, Akhmediev NN, Soto-Crespo JM, Bergman K, Knox WH (1999) Phys Rev Lett 82:3988
13. Fredkin E, Toffoli T (1982) Conservative logic. Int J Theor Phys 21(3/4):219–253
14. Hasegawa A, Tappert F (1973) Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers 1: anomalous dispersion. Appl Phys Lett 23(3):142–144
15. Islam MN, Poole CD, Gordon JP (1989) Opt Lett 14:1011
16. Jakubowski MH, Steiglitz K, Squier R (1998) State transformations of colliding optical solitons and possible application to computation in bulk media. Phys Rev E 58(5):6752–6758
17. Kang JU, Stegeman GI, Aitchison JS, Akhmediev N (1996) Observation of Manakov spatial solitons in AlGaAs planar waveguides. Phys Rev Lett 76(20):3699–3702
18. Korolev AE, Nazarov VN, Nolan DA, Truesdale CM (2005) Opt Lett 14:132
19. Manakov SV (1973) On the theory of two-dimensional stationary self-focusing of electromagnetic waves. Zh Eksp Teor Fiz 65(2):505–516 [Sov. Phys. JETP 38, 248 (1974)]Google Scholar
20. Mano MM (1972) Computer logic design. Prentice-Hall, Englewood Cliffs
21. Menyuk CR (1987) Opt Lett 12:614
22. Menyuk CR (1988) J Opt Soc Am B 5:392
23. Menyuk CR (1989) Pulse propagation in an elliptically birefringent Kerr medium. IEEE J Quantum Electron 25(12):2674–2682
24. Mollenauer LF, Stolen RH, Gordon JP (1980) Experimental observation of picosecond pulse narrowing and solitons in optical fibers. Phys Rev Lett 45(13):1095–1098
25. Nishizawa N, Goto T (2002) Opt Express 10:1151–1160
26. Radhakrishnan R, Lakshmanan M, Hietarinta J (1997) Inelastic collision and switching of coupled bright solitons in optical fibers. Phys Rev E 56(2):2213–2216
27. Rand D, Steiglitz K, Prucnal PR (2005) Signal standardization in collision-based soliton computing. Int J Unconv Comput 1:31–45Google Scholar
28. Rand D, Glesk I, Bres CS, Nolan DA, Chen X, Koh J, Fleischer JW, Steiglitz K, Prucnal PR (2007) Observation of temporal vector soliton propagation and collision in birefringent fiber. Phys Rev Lett 98(5):053902
29. Russell JS (1844) Report on waves. In: Report of the 14th meeting of the British Association for the Advancement of Science. Taylor and Francis, London, pp 331–390Google Scholar
30. Shih MF, Segev M (1996) Incoherent collisions between two-dimensional bright steady-state photorefractive spatial screening solitons. Opt Lett 21(19):1538–1540
31. Shor PW (1994) Algorithms for quantum computation: discrete logarithms and factoring. In: 35th IEEE Press, Piscataway, pp 124–134Google Scholar
32. Squier RK, Steiglitz K (1993) 2-d FHP lattice gasses are computation universal. Complex Syst 7:297–307
33. Steblina VV, Buryak AV, Sammut RA, Zhou DY, Segev M, Prucnal P (2000) Stable self-guided propagation of two optical harmonics coupled by a microwave or a terahertz wave. J Opt Soc Am B 17(12):2026–2031
34. Steiglitz K (2000) Time-gated Manakov spatial solitons are computationally universal. Phys Rev E 63(1):016608
35. Steiglitz K (2001) Multistable collision cycles of Manakov spatial solitons. Phys Rev E 63(4):046607
36. Yang J (1997) Physica D 108:92–112
37. Yang J (1999) Multisoliton perturbation theory for the Manakov equations and its applications to nonlinear optics. Phys Rev E 59(2):2393–2405
38. Zakharov VE, Shabat AB (1971) Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media. Zh Eksp Teor Fiz 61(1):118–134 [Sov. Phys. JETP 34, 62 (1972)]