Computing with Solitons

  • Darren RandEmail author
  • Ken Steiglitz
Reference work entry
Part of the Encyclopedia of Complexity and Systems Science Series book series (ECSSS)



This term is generally used in more than one way and in different contexts. For the purposes of this article, a partial differential equation or system of partial differential equations is integrable if it can be solved explicitly to yield solitons (qv).

Manakov system

A system of two cubic Schrödinger equations where the self- and cross-phase modulation terms have equal weight.

Nonlinear Schrodinger equation

A partial differential equation that has the same form as the Schrodinger equation of quantum mechanics, with a term nonlinear in the dependent variable, and, for the purposes of this article, is interpreted classically.

Self- and cross-phase modulation

Any terms in a nonlinear Schrödinger equation that involve nonlinear functions of the dependent variable of the equation or nonlinear functions of a dependent variable of another (coupled) equation, respectively.

Solitary wave

A solitary wave is a wave characterized by undistorted propagation. Solitary waves do...


  1. Ablowitz MJ, Prinari B, Trubatch AD (2004) Soliton interactions in the vector nls equation. Inverse Prob 20(4):1217–1237MathSciNetCrossRefGoogle Scholar
  2. Ablowitz MJ, Prinari B, Trubatch AD (2006) Discrete vector solitons: composite solitons, Yang- Baxter maps and computation. Stud Appl Math 116:97–133MathSciNetCrossRefGoogle Scholar
  3. Agrawal GP (2001) Nonlinear fiber optics, 3rd edn. Academic, San DiegozbMATHGoogle Scholar
  4. Anastassiou C, Segev M, Steiglitz K, Giordmaine JA, Mitchell M, Shih MF, Lan S, Martin J (1999) Energy-exchange interactions between colliding vector solitons. Phys Rev Lett 83(12):2332–2335CrossRefGoogle Scholar
  5. Anastassiou C, Fleischer JW, Carmon T, Segev M, Steiglitz K (2001) Information transfer via cascaded collisions of vector solitons. Opt Lett 26(19):1498–1500CrossRefGoogle Scholar
  6. Barad Y, Silberberg Y (1997) Phys Rev Lett 78:3290CrossRefGoogle Scholar
  7. Berlekamp ER, Conway JH, Guy RK (1982) Winning ways for your mathematical plays, vol 2. Academic [Harcourt Brace Jovanovich Publishers], LondonzbMATHGoogle Scholar
  8. Cao XD, McKinstrie CJ (1993) J Opt Soc Am B 10:1202CrossRefGoogle Scholar
  9. Chen ZG, Segev M, Coskun TH, Christodoulides DN (1996) Observation of incoherently coupled photorefractive spatial soliton pairs. Opt Lett 21(18):1436–1438CrossRefGoogle Scholar
  10. Christodoulides DN, Joseph RI (1988) Discrete self-focusing in nonlinear arrays of coupled waveguides. Opt Lett 13:794–796CrossRefGoogle Scholar
  11. Christodoulides DN, Singh SR, Carvalho MI, Segev M (1996) Incoherently coupled soliton pairs in biased photorefractive crystals. Appl Phys Lett 68(13):1763–1765CrossRefGoogle Scholar
  12. Cundiff ST, Collings BC, Akhmediev NN, Soto-Crespo JM, Bergman K, Knox WH (1999) Phys Rev Lett 82:3988CrossRefGoogle Scholar
  13. Fredkin E, Toffoli T (1982) Conservative logic. Int J Theor Phys 21(3/4):219–253MathSciNetCrossRefGoogle Scholar
  14. Hasegawa A, Tappert F (1973) Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers 1: anomalous dispersion. Appl Phys Lett 23(3):142–144CrossRefGoogle Scholar
  15. Islam MN, Poole CD, Gordon JP (1989) Opt Lett 14:1011CrossRefGoogle Scholar
  16. Jakubowski MH, Steiglitz K, Squier R (1998) State transformations of colliding optical solitons and possible application to computation in bulk media. Phys Rev E 58(5):6752–6758CrossRefGoogle Scholar
  17. Kang JU, Stegeman GI, Aitchison JS, Akhmediev N (1996) Observation of Manakov spatial solitons in AlGaAs planar waveguides. Phys Rev Lett 76(20):3699–3702CrossRefGoogle Scholar
  18. Korolev AE, Nazarov VN, Nolan DA, Truesdale CM (2005) Opt Lett 14:132CrossRefGoogle Scholar
  19. Manakov SV (1973) On the theory of two-dimensional stationary self-focusing of electromagnetic waves. Zh Eksp Teor Fiz 65(2):505–516 [Sov. Phys. JETP 38, 248 (1974)]Google Scholar
  20. Mano MM (1972) Computer logic design. Prentice-Hall, Englewood CliffszbMATHGoogle Scholar
  21. Menyuk CR (1987) Opt Lett 12:614CrossRefGoogle Scholar
  22. Menyuk CR (1988) J Opt Soc Am B 5:392CrossRefGoogle Scholar
  23. Menyuk CR (1989) Pulse propagation in an elliptically birefringent Kerr medium. IEEE J Quantum Electron 25(12):2674–2682CrossRefGoogle Scholar
  24. Mollenauer LF, Stolen RH, Gordon JP (1980) Experimental observation of picosecond pulse narrowing and solitons in optical fibers. Phys Rev Lett 45(13):1095–1098CrossRefGoogle Scholar
  25. Nishizawa N, Goto T (2002) Opt Express 10:1151–1160CrossRefGoogle Scholar
  26. Radhakrishnan R, Lakshmanan M, Hietarinta J (1997) Inelastic collision and switching of coupled bright solitons in optical fibers. Phys Rev E 56(2):2213–2216CrossRefGoogle Scholar
  27. Rand D, Steiglitz K, Prucnal PR (2005) Signal standardization in collision-based soliton computing. Int J Unconv Comput 1:31–45Google Scholar
  28. Rand D, Glesk I, Bres CS, Nolan DA, Chen X, Koh J, Fleischer JW, Steiglitz K, Prucnal PR (2007) Observation of temporal vector soliton propagation and collision in birefringent fiber. Phys Rev Lett 98(5):053902CrossRefGoogle Scholar
  29. Russell JS (1844) Report on waves. In: Report of the 14th meeting of the British Association for the Advancement of Science. Taylor and Francis, London, pp 331–390Google Scholar
  30. Shih MF, Segev M (1996) Incoherent collisions between two-dimensional bright steady-state photorefractive spatial screening solitons. Opt Lett 21(19):1538–1540CrossRefGoogle Scholar
  31. Shor PW (1994) Algorithms for quantum computation: discrete logarithms and factoring. In: 35th IEEE Press, Piscataway, pp 124–134Google Scholar
  32. Squier RK, Steiglitz K (1993) 2-d FHP lattice gasses are computation universal. Complex Syst 7:297–307zbMATHGoogle Scholar
  33. Steblina VV, Buryak AV, Sammut RA, Zhou DY, Segev M, Prucnal P (2000) Stable self-guided propagation of two optical harmonics coupled by a microwave or a terahertz wave. J Opt Soc Am B 17(12):2026–2031CrossRefGoogle Scholar
  34. Steiglitz K (2000) Time-gated Manakov spatial solitons are computationally universal. Phys Rev E 63(1):016608CrossRefGoogle Scholar
  35. Steiglitz K (2001) Multistable collision cycles of Manakov spatial solitons. Phys Rev E 63(4):046607CrossRefGoogle Scholar
  36. Yang J (1997) Physica D 108:92–112MathSciNetCrossRefGoogle Scholar
  37. Yang J (1999) Multisoliton perturbation theory for the Manakov equations and its applications to nonlinear optics. Phys Rev E 59(2):2393–2405MathSciNetCrossRefGoogle Scholar
  38. Zakharov VE, Shabat AB (1971) Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media. Zh Eksp Teor Fiz 61(1):118–134 [Sov. Phys. JETP 34, 62 (1972)]MathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Lincoln LaboratoryMassachusetts Institute of TechnologyLexingtonUSA
  2. 2.Computer Science DepartmentPrinceton UniversityPrincetonUSA

Personalised recommendations