Advertisement

Social Algorithms

  • Xin-She YangEmail author
Reference work entry
Part of the Encyclopedia of Complexity and Systems Science Series book series (ECSSS)

Glossary

Algorithm

An algorithm is a step-by-step, computational procedure or a set of rules to be followed by a computer in calculations or computing an answer to a problem.

Ant colony optimization

Ant colony optimization (ACO) is an algorithm for solving optimization problems such as routing problems using multiple agents. ACO mimics the local interactions of social ant colonies and the use of chemical messenger – pheromone to mark paths. No centralized control is used and the system evolves according to simple local interaction rules.

Bat algorithm

Bat algorithm (BA) is an algorithm for optimization, which uses frequency-tuning to mimic the basic behavior of echolocation of microbats. BA also uses the variations of loudness and pulse emission rates and a solution vector to a problem corresponds to a position vector of a bat in the search space. Evolution of solutions follow two algorithmic equations for positions and frequencies.

Bees-inspired algorithms

Bees-inspired algorithms are...

Bibliography

Primary Literature

  1. Afshar A, Haddad OB, Marino MA, Adams BJ (2007) Honey-bee mating optimization (HBMO) algorithm for optimal reservoir operation. J Franklin Inst 344(4):452–462CrossRefGoogle Scholar
  2. Ashby WA (1962) Princinples of the self-organizing sysem. In: Von Foerster H, Zopf GW Jr (eds) Principles of self-organization: transactions of the University of Illinois Symposium. Pergamon Press, London, pp 255–278Google Scholar
  3. Blum C, Roli A (2003) Metaheuristics in combinatorial optimization: overview and conceptural comparision. ACM Comput Surv 35(2):268–308CrossRefGoogle Scholar
  4. Chabert JL (1999) A history of algorithms: from the pebble to the mcriochip. Springer, HeidelbergCrossRefGoogle Scholar
  5. Dorigo M (1992) Opimization, learning and natural algorithms. PhD thesis, Politecnico di Milano, ItalyGoogle Scholar
  6. Eiben AE, Smit SK (2011) Parameter tuning for configuring and analyzing evolutionary aglorithms. Swarm Evol Comput 1(1):19–31CrossRefGoogle Scholar
  7. Engelbrecht AP (2005) Fundamentals of computational swarm intelligence. Wiley, HobokenGoogle Scholar
  8. Fisher L (2009) The perfect swarm: the science of complexity in everday life. Basic Books, New YorkGoogle Scholar
  9. Fogel LJ, Owens AJ, Walsh MJ (1966) Artificial intelligence through simulated evolution. Wiley, New YorkzbMATHGoogle Scholar
  10. Gandomi AH, Yang XS, Alavi AH (2013) Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems. Eng Comput 29(1):17–35CrossRefGoogle Scholar
  11. Geem ZW, Kim JH, Loganathan GV (2001) A new heuristic optimization algorithm: harmony search. SIMULATION 76(2):60–68CrossRefGoogle Scholar
  12. Glover F (1986) Future paths for integer programming and links to artificial intelligence. Comput Oper Res 13(5): 533–549MathSciNetCrossRefGoogle Scholar
  13. Goldberg DE (1989) Genetic algorithms in search, optimisation and machine learning. Addison Wesley, ReadingzbMATHGoogle Scholar
  14. He XS, Yang XS, Karamanoglu M, Zhao YX (2017) Global convergence analysis of the flower pollination algorithm: a discrete-time Markov chain approach. Proc Comput Sci 108(1):1354–1363CrossRefGoogle Scholar
  15. Holland J (1975) Adaptation in natural and Arficial systems. University of Michigan Press, Ann ArborGoogle Scholar
  16. Joyce T, Herrmann JM (2018) A review of no free lunch theorems, and their implications for metaheuristic optimisation. In: Yang XS (ed) Nature-inspired algorithms and applied optimization. Springer, Cham, Switzerland, pp 27–52Google Scholar
  17. Judea P (1984) Heuristics. Addison-Wesley, New YorkGoogle Scholar
  18. Karaboga D (2005) An idea based on honeybee swarm for numerical optimization, Technical Report. Erciyes University, TurkeyGoogle Scholar
  19. Keller EF (2009) Organisms, machines, and thunderstorms: a history of self-organization, part two. Complexity, emergenece, and stable attractors. Hist Stud Nat Sci 39(1):1–31CrossRefGoogle Scholar
  20. Kennedy J, Eberhart RC (1995) Particle swarm optimization. In: Proceedings of IEEE international conference on neural networks, Piscataway, pp 1942–1948Google Scholar
  21. Kennedy J, Eberhart RC, Shi Y (2001) Swarm intelligence. Academic Press, LondonGoogle Scholar
  22. Kirkpatrick S, Gellat CD, Vecchi MP (1983) Optimization by simulated annealing. Science 220(4598):671–680MathSciNetCrossRefGoogle Scholar
  23. Lazer D (2015) The rise of the social algorithm. Science 348(6239):1090–1091MathSciNetCrossRefGoogle Scholar
  24. Nakrani S, Tovey C (2004) On honeybees and dynamic server allocation in internet hosting centers. Adapt Behav 12(3):223–240CrossRefGoogle Scholar
  25. Pavlyukevich I (2007) Lévy flights, non-local search and simulated annealing. J Comput Phys 226(2): 1830–1844MathSciNetCrossRefGoogle Scholar
  26. Pham DT, Ghanbarzadeh A, Koc E, Otri S, Rahim S, Zaidi M (2005) The bees algorithm, technical note. Manufacturing Engineering Centre, Cardiff University, CardiffGoogle Scholar
  27. Rashedi E, Nezamabadi-pour H, Sayazdi S (2009) GSA: a gravitational search algorithm. Inf Sci 179(13): 2232–2248CrossRefGoogle Scholar
  28. Reynolds AM, Rhodes CJ (2009) The Lévy fligth paradigm: random search patterns and mechanisms. Ecology 90(4):877–887CrossRefGoogle Scholar
  29. Rodrigues D, Silva GFA, Papa JP, Marana AN, Yang XS (2016) EEG-based person identificaiton through binary flower pollination algorithm. Expert Syst Appl 62(1): 81–90CrossRefGoogle Scholar
  30. Storn R, Price K (1997) Differential evolution: a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11(4):341–359MathSciNetCrossRefGoogle Scholar
  31. Süli E, Mayer D (2003) An introduction to numerical analysis. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  32. Turing AM (1948) Intelligent machinery, National Physical Laboratory, Technical reportGoogle Scholar
  33. Wolpert DH, Macready WG (1997) No free lunch theorem for optimization. IEEE Trans Evol Comput 1(1):67–82CrossRefGoogle Scholar
  34. Wolpert DH, Macready WG (2005) Coevolutionary free lunches. IEEE Trans Evol Comput 9(6):721–735CrossRefGoogle Scholar
  35. Yang XS (2005). Engineering optimizaton via nature-inspired virtual bee algorithms. In: Articial intelligence and knowledge engineering application: a bioinspired approach, proceedings of IWINAC, pp 317–323Google Scholar
  36. Yang XS (2008) Nature-inspired metaheuristic algorithms. Luniver Press, BristolGoogle Scholar
  37. Yang XS (2010a) Firefly algorithm, stochastic test functions and design optimisation. Int J Bio-Inspired Comput 2(2):78–84CrossRefGoogle Scholar
  38. Yang XS (2010b) A new metaheuristic bat-inspired algorithm. In: Nature-inspired cooperative strategies for optimization (NICSO 2010). Springer, pp 65–74. SCI 284Google Scholar
  39. Yang XS (2010c) Engineering optimization: an introduction with metaheuristic applications. Wiley, HobokenCrossRefGoogle Scholar
  40. Yang XS (2011) Bat algorithm for multi-objective optimisation. Int J Bio-Inspired Comput 3(5):267–274CrossRefGoogle Scholar
  41. Yang XS, (2012). Flower pollination algorithm for global optimization. In: Unconventional computation and natural computation. Lecture notes in computer science, vol 7445, pp 240–249Google Scholar
  42. Yang XS (2014a) Cuckoo search and firefly algorithm: theory and applications. Studies in computational intelligence, vol 516. Springer, HeidelbergGoogle Scholar
  43. Yang XS (2014b) Nature-inspired optimization algorithms. Elsevier Insight, LondonzbMATHGoogle Scholar
  44. Yang XS (2018) Nature-inspired algorithms and applied Optimizaton. Springer, Cham, Switzerland. (in press)Google Scholar
  45. Yang XS, Deb S (2009) Cuckoo search via Lévy flights. In: Proceedings of world congress on nature & biologically inspired computing (NaBic 2009). IEEE Publications, Coimbatore, pp 210–214CrossRefGoogle Scholar
  46. Yang XS, Deb S (2010) Engineering optimization by cuckoo search. Int J Math Mod Num Optim 1(4): 330–343zbMATHGoogle Scholar
  47. Yang XS, Deb S (2013) Multiobjective cuckoo search for design optimization. Comput Oper Res 40(6): 1616–1624MathSciNetCrossRefGoogle Scholar
  48. Yang XS, Deb S (2014) Cuckoo search: recent advances and applications. Neural Comput & Applic 24(1): 169–174CrossRefGoogle Scholar
  49. Yang XS, Papa JP (2016) Bio-inspired computation and applications in image processing. Academic Press, LondonGoogle Scholar
  50. Yang XS, Deb S, Loomes M, Karamanoglu M (2013) A framework for self-tuning optimization algorithm. Neural Comput & Applic 23(7–8):2051–2057CrossRefGoogle Scholar
  51. Yang XS, Karamanoglu M, He XS (2014) Flower pollination algorithm: a novel approach for multiobjective optimization. Eng Optim 46(9):1222–1237MathSciNetCrossRefGoogle Scholar
  52. Yang XS, Chien SF, Ting TO (2015) Bio-inspired computation in telecommunications. Morgan Kaufmann, WalthamGoogle Scholar
  53. Yildiz AR (2013) Cuckoo search algorithm for the selection of optimal machine parameters in milling operations. Int J Adv Manuf Technol 64(1):55–61CrossRefGoogle Scholar

Books and Reviews

  1. Allan M (1977) Darwin and his flowers. Faber & Faber, LondonGoogle Scholar
  2. Altringham JD (1998) Bats: biology and behaviour. Oxford University Press, OxfordGoogle Scholar
  3. Beer D (2016) The social power of algorithms. Inf Commun Soc 20(1):1–13MathSciNetCrossRefGoogle Scholar
  4. Bekdas G, Nigdeli SM, Yang XS (2015) Sizing optimization of truss structures using flower pollination algorithm. Appl Soft Comput 37(1):322–331CrossRefGoogle Scholar
  5. Bell WJ (1991) Searching behaviour: the Behavioural ecology of finding resources. Chapman & Hall, LondonGoogle Scholar
  6. Berlinski D (2001) The advent of the algorithm: the 300-year journey from an idea to the computer. Harvest Book, New YorkGoogle Scholar
  7. Bolton B (1995) A new general catalogue of the ants of the world. Harvard University Press, Cambridge, MAGoogle Scholar
  8. Boyd S, Vandenberghe L (2004) Convex optimization. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  9. Brin S, Page L (1998) The anatomy of a large-scale hypertextural web search engine. Comput Netw ISDN Syst 30(1–7):107–117CrossRefGoogle Scholar
  10. Copeland BJ (2004) The essential turing. Oxford University Press, OxfordzbMATHGoogle Scholar
  11. Dantzig GB, Thapa MN (1997) Linear programming 1: introduction. Springer, HeidelbergzbMATHGoogle Scholar
  12. Davies NB (2011) Cuckoo adaptations: trickery and tuning. J Zool 284(1):1–14CrossRefGoogle Scholar
  13. Fishman GS (1995) Monte carlo: concepts, Algorithms and Applications. Springer, New YorkzbMATHGoogle Scholar
  14. Glover BJ (2007) Understanding flowers and flowering: an integrated approach. Oxford University Press, OxfordCrossRefGoogle Scholar
  15. Hölldobler B, Wilson EO (2009) The superorganism: the beauty, Elegence and strangeness of insect Societies. Norton & Co, New YorkGoogle Scholar
  16. Jamil M, Yang XS (2013) A literature survey of benchmark functions for global optimisation problems. Int J Math Mod Numer Optim 4(2):150–194zbMATHGoogle Scholar
  17. Koza JR (1992) Genetic programming: on the programming of computers by means of natural selection. MIT Press, Cambridge, MAzbMATHGoogle Scholar
  18. Lewis SM, Cratsley CK (2008) Flash signal evolution, mate choice and predation in fireflies. Annu Rev Entomol 53(2):293–321CrossRefGoogle Scholar
  19. Lindauer M (1971) Communication among social bees. Harvard University Press, Cambridge, MACrossRefGoogle Scholar
  20. Page L, Brin S, Motwani R, Winograd T (1998) The PageRank citation ranking: bringing order to the web. Technical Report. Stanford Uniersity, Stanford, USAGoogle Scholar
  21. Singh S (1999) The code book. Fouth Estate, LondonGoogle Scholar
  22. Struik DJ (1987) A concise history of mathematics, 4th edn. Dover Publications, New YorkzbMATHGoogle Scholar
  23. Surowiecki J (2004) The wisdom of crowds. Doubleday, AnchorGoogle Scholar
  24. Vapnik V (1995) The nature of statistical learning theory. Springer, New YorkCrossRefGoogle Scholar
  25. Waser NM (1986) Flower constancy: definition, cause and measurement. Am Nat 127(5):596–603CrossRefGoogle Scholar
  26. Yang XS (2011) Metaheuristic optimization. Scholarpedia 6(8):11472CrossRefGoogle Scholar
  27. Yang XS, Cui ZH, Xiao RB, Gandom AH, Karamanoglu M (2013) Swarm intelligence and bio-inspired computation: theory and applications. Elsevier, LondonCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Science and TechnologyMiddlesex UniversityLondonUK
  2. 2.Department of EngineeringUniversity of CambridgeCambridgeUK

Personalised recommendations