Cellular Computing

  • Christof TeuscherEmail author
Reference work entry
Part of the Encyclopedia of Complexity and Systems Science Series book series (ECSSS)



The biological cell is the smallest self-contained, self-maintaining, and self-reproducing unit of all living organisms. Various computing paradigms were inspired by the biological cell.


Synonymous with information processing or also algorithm. Computations can, for example, be performed by abstract machines, real computer hardware, or biological systems. The abstract concept of the Turing machine separates the class of computable from the class of non-computable functions.


The science that deals with the manipulation of symbols. Also refers to the processes carried out by real or abstract computers.

Molecular computing

A subfield of cellular computing, where the molecules instead of the cell play a central functional role.

Parallel computing

Parallel computing involves the execution of a task on multiple processors with the goal to speed up the execution process by dividing up the task into smaller sub-tasks that can be executed simultaneously.



Primary Literature

  1. Abelson H, Allen D, Coore D, Hanson C, Rauch E, Sussman GJ, Weiss R (2000) Amorphous computing. Commun ACM 43(5):74–82CrossRefGoogle Scholar
  2. Adelman LM (1994) Molecular computation of solutions to combinatorial problems. Science 266:1021–1024CrossRefGoogle Scholar
  3. Albert R, Barabasi AL (2002) Statistical mechanics of complex networks. Rev Mod Phys 74:47–97MathSciNetzbMATHCrossRefGoogle Scholar
  4. Alberts B, Bray D, Lewis J, Raff M, Roberts K, Watson JD (eds) (1994) Molecular biology of the cell, 3rd edn. Garland Publishing, New YorkGoogle Scholar
  5. Amos M (ed) (2004) Cellular computing. Oxford University Press, New YorkzbMATHGoogle Scholar
  6. Arbib MA (ed) (1995) The handbook of brain theory and neural networks. MIT Press, CambridgeGoogle Scholar
  7. Astor JC, Adami C (2001) A developmental model for the evolution of artificial neural networks. Artif Life 6(3):189–218CrossRefGoogle Scholar
  8. Baldi P, Brunak S (2001) Bioinformatics: the machine learning approach, 2nd edn. MIT Press, CambridgezbMATHGoogle Scholar
  9. Banâtre JP, Coutant A, Le Metayer D (1988) A parallel machine for multiset transformation and its programming style. Future Gener Comput Syst 4:133–144CrossRefGoogle Scholar
  10. Benenson Y, Paz-Elizur T, Adar R, Keinan E, Leivneh Z, Shapiro E (2001) Programmable and autonomous computing machine made of biomolecules. Nature 414(6862):430–434CrossRefGoogle Scholar
  11. Bennett CH (1982) The thermodynamics of computation a review. Int J Theor Phys 21(12):905–940CrossRefGoogle Scholar
  12. Berry G, Boudol G (1992) The chemical abstract machine. Theor Comput Sci 96:217–248MathSciNetzbMATHCrossRefGoogle Scholar
  13. Butera WJ (2002) Programming a paintable computer. PhD thesis, MIT Media Lab, CambridgeGoogle Scholar
  14. Calude CS, Paun G (2000) Computing with cells and atoms: an introduction to quantum and membrane computing. Taylor & Francis, New YorkzbMATHGoogle Scholar
  15. Capcarrere MS (2002) Cellular automata and other cellular Systems: design & evolution. PhD thesis, Swiss Federal Institute of Technology, LausanneGoogle Scholar
  16. Cell Matrix Corporation. Accessed 12 July 2008
  17. Chua LO, Roska T (2002) Cellular neural networks & visual computing. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  18. Conrad M (1989) The brain-machine disanalogy. BioSystems 22(3):197–213CrossRefGoogle Scholar
  19. Conrad M, Liberman EA (1982) Molecular computing as a link between biological and physical theory. J Theor Biol 98(2):239–252CrossRefGoogle Scholar
  20. Cook M (2004) Universality in elementary cellular automata. Complex Syst 15(1):1–40MathSciNetzbMATHGoogle Scholar
  21. Coore D (1999) Botanical computing: a developmental approach to generating interconnect topologies on an amorphous computer. PhD thesis, MIT Department of Electrical Engineering and Computer Science, CambridgeGoogle Scholar
  22. Cuniberti G, Fagas G, Richter K (eds) (2005) Introducing molecular electronics. Lecture notes in physics, vol 680. Springer, BerlinGoogle Scholar
  23. Das R, Crutchfield JP, Mitchell M, Hanson JE (1995) Evolving globally synchronized cellular automata. In: Eshelman LJ (ed) Proceedings of the sixth international conference on genetic algorithms. Morgan Kaufmann, San Francisco, pp 336–343Google Scholar
  24. Davis M (1958) Computability and unsolvability. McGraw-Hill, New YorkzbMATHGoogle Scholar
  25. Davis BD (1961) The teleonomic significance of biosynthetic control mechanisms. Cold Spring Harb Symp Quant Biol 26:1–10CrossRefGoogle Scholar
  26. Davis M (2004) The myth of hypercomputation. In: Teuscher C (ed) Alan Turing: life and legacy of a great thinker. Springer, Berlin, pp 195–212 (reprinted with color images in 2005)CrossRefGoogle Scholar
  27. Dellaert F, Beer RD (1994) Toward an evolvable model of development for autonomous agent synthesis. In: Brooks RA, Maes P (eds) Artificial life IV. Proceedings of the fourth international workshop on the synthesis and simulation of living systems. A Bradford Book, MIT Press, Cambridge, pp 246–257Google Scholar
  28. Deutsch D (1985) Quantum theory, the Church-Turing principle of the universal quantum computer. Proc R Soc Lond A400:97–117MathSciNetzbMATHCrossRefGoogle Scholar
  29. Dittrich P, Ziegler J, Banzhaf W (2001) Artificial chemistries a review. Artif Life 7(3):225–275CrossRefGoogle Scholar
  30. Dorigo M, Stützle T (2004) Ant colony optimization. MIT Press, CambridgezbMATHGoogle Scholar
  31. Durbeck LJK, Macias NJ (2001) The cell matrix: an architecture for nanocomputing. Nanotechnology 12:217–230CrossRefGoogle Scholar
  32. Eggenberger P (1997) Creation of neural networks based on developmental and evolutionary principles. In: Gerstner W, Germond A, Hasler M, Nicod JD (eds) Proceedings of the international conference on artificial neural networks. ICANN’97, Lausanne, Switzerland. Lecture notes in computer science, vol 1327. Springer, Berlin, pp 337–342Google Scholar
  33. Endy D, Brent R (2001) Modelling cellular behavior. Nature 409(6818):391–395CrossRefGoogle Scholar
  34. Feynman RP (1960) There’s plenty of room at the bottom: an invitation to enter a new field of physics. Caltech’s Eng Sci 23:22–36Google Scholar
  35. Fleischer KW, Barr AH (1994) A simulation testbed for the study of multicellular development: the multiple mechanisms of morphogenesis. In: Langton CG (ed) Artificial life III. SFI studies in the science of complexity, vol XVII. Addison-Wesley, Redwood City, pp 389–416Google Scholar
  36. Flemming W (1880) Beiträge zur Kenntnis der Zelle und ihrer Lebenserscheinungen. Arch Mikrosk Anat 18:151–289CrossRefGoogle Scholar
  37. Forbes N (2004) Imitation of life: how biology is inspiring computing. MIT Press, CambridgeGoogle Scholar
  38. Gibbs WW (2001) Cybernetic cells. Sci Am 285(2):43–47Google Scholar
  39. Gokhale M, Graham PS (2005) Reconfigurable computing: accelerating computation with field programmable gate arrays. Springer, BerlinGoogle Scholar
  40. Gruau F (1994) Neural network synthesis using cellular encoding and the genetic algorithm. PhD thesis, Ecole Normale Supérieure de LyonGoogle Scholar
  41. Harel D (2003) Computers Ltd.: what they really can’t do. Oxford University Press, New YorkzbMATHGoogle Scholar
  42. Hillis DW (1985) The connection machine. MIT Press, CambridgeGoogle Scholar
  43. Hooke R (1665) Micrographia: or, some physiological descriptions of minute bodies made by magnifying glasses. J. Martyn and J. Allestry, LondonGoogle Scholar
  44. Jacob F, Monod J (1961) Genetic regulatory mechanisms in the synthesis of proteins. J Mol Biol 3:318–356CrossRefGoogle Scholar
  45. Kish LB (2002) End of Moore’s law: thermal (noise) death of integration in micro and nano electronics. Phys Lett A 305:144–149CrossRefGoogle Scholar
  46. Kitano H (ed) (2001) Foundations of systems biology. MIT Press, CambridgeGoogle Scholar
  47. Koch C (1999) Biophysics of computation. Oxford University Press, New YorkGoogle Scholar
  48. Landweber LF, Kari L (1999) The evolution of cellular computing: nature’s solution of a computational problem. BioSystems 52:3–13CrossRefGoogle Scholar
  49. Langton CG (1984) Self-reproduction in cellular automata. Physica D 10(1–2):135–144zbMATHCrossRefGoogle Scholar
  50. Langton CG (ed) (1995) Artificial life: an overview. MIT Press, CambridgeGoogle Scholar
  51. Lederman H, Macdonald J, Stefanovic D, Stojanovic MN (2006) Deoxyribozyme-based three-input logic gates and construction of a molecular full adder. Biochemistry 45(4):1194–1199CrossRefGoogle Scholar
  52. Lindenmayer A (1968) Mathematical models for cellular interaction in development, parts I and II. J Theor Biol 18:280–315CrossRefGoogle Scholar
  53. Lloyd S (2000) Ultimate physical limits to computation. Nature 406:1047–1054CrossRefGoogle Scholar
  54. Macias NJ (1999) The PIG paradigm: the design and use of a massively parallel fine grained self-reconfigurable infinitely scalable architecture. In: Stoica A, Keymeulen D, Lohn J (eds) Proceedings of the First NASA/DOD Workshop on Evolvable Hardware. IEEE Computer Society, Los Alamitos, pp 175–180CrossRefGoogle Scholar
  55. Mange D, Tomassini M (eds) (1998) Bio-inspired computing machines: towards novel computational architectures. Presses Polytechniques et Universitaires Romandes, LausannezbMATHGoogle Scholar
  56. Mange D, Sipper M, Stauffer A, Tempesti G (2000) Toward robust integrated circuits: the embryonics approach. Proc IEEE 88(4):516–540CrossRefGoogle Scholar
  57. Mange D, Stauffer A, Peparolo L, Tempesti G (2004) A macroscopic view of self-replication. Proc IEEE 92(12):1929–1945CrossRefGoogle Scholar
  58. McCulloch WS, Pitts WH (1943) A logical calculus of the ideas immanent in neural nets. Bull Math Biophys 5:115–133MathSciNetzbMATHCrossRefGoogle Scholar
  59. Minsky ML (1967) Computation: finite and infinite machines. Prentice-Hall, Englewood CliffszbMATHGoogle Scholar
  60. Monod J, Jacob F (1961) Teleonomic mechanisms in cellular metabolism, growth, and differentiation. Cold Spring Harb Symp Quant Biol 26:389–401CrossRefGoogle Scholar
  61. Moore GE (1965) Cramming more components onto integrated circuits. Electronics 38(8):114–117Google Scholar
  62. Nagpal R (2001) Programmable self-assembly: constructing global shape using biologically-inspired local interactions and origami mathematics. MIT Department of Electrical Engineering and Computer Science, Cambridge, Ph D thesisGoogle Scholar
  63. Odell GM, Oster G, Albrech P, Burnside B (1981) The mechanical basis of morphogenesis. In: Epithelial folding and invagination. Dev Biol 85:446–462Google Scholar
  64. Ono N, Ikegami T (2000) Self-maintenance and self-reproduction in an abstract cell model. J Theor Biol 206(2):243–253CrossRefGoogle Scholar
  65. Ormondi AR, Rajapakse JC (eds) (2006) FPGA implementations of neural networks. Springer, DordrechtGoogle Scholar
  66. Papadimitrou CH (1994) Computational complexity. Addison-Wesley, ReadingGoogle Scholar
  67. Paton RC (1993) Some computational models at the cellular level. Biosystems 29:63–75CrossRefGoogle Scholar
  68. Paton R, Bolouri H, Holcombe M, Parish JH, Tateson R (eds) (2004) Computation in cells and tissues. Springer, BerlinzbMATHGoogle Scholar
  69. Pattee HH (1961) On the origin of macromolecular sequences. Biophys J 1(8):683–710CrossRefGoogle Scholar
  70. Paun G (2000) Computing with membranes. J Comput Syst Sci 61(1):108–143, first published in a TUCS Research Report, No 208, Nov 1998, http://www.tucs.fiMathSciNetzbMATHCrossRefGoogle Scholar
  71. Paun G (2002) Membrane computing. Springer, BerlinzbMATHCrossRefGoogle Scholar
  72. Paun G, Rozenberg G, Salomaa A (1998) DNA computing: new computing paradigms. Springer, HeidelbergzbMATHCrossRefGoogle Scholar
  73. Paweletz N (2001) Walther Flemming: pioneer of mitosis research. Nat Rev Mol Cell Biol 2:72–75CrossRefGoogle Scholar
  74. Petraglio E (2004) Fault tolerant self-replicating systems. Swiss Federal Institute of Technology (EPFL), Lausanne, Ph D thesisGoogle Scholar
  75. Petreska B, Teuscher C (2004) A reconfigurable hardware membrane system. In: Martin-Vide C, Mauri G, Paun G, Rozenberg G, Salomaa A (eds) Membrane computing. Lecture notes in computer science, vol 2933. Springer, Berlin, pp 269–285Google Scholar
  76. Pohorille A, Deamer D (2002) Artificial cells: prospects for biotechnology. Trends Biotechnol 20(3):123–128CrossRefGoogle Scholar
  77. Rasmussen S, Chen L, Nilsson M, Abe S (2003) Bridging nonliving and living matter. Artif Life 9(3):269–316CrossRefGoogle Scholar
  78. Rasmussen S, Chen L, Deamer D, Krakauer DC, Packard NH, Stadler PF, Bedau MA (2004) Transitions from nonliving to living matter. Science 303:963–965CrossRefGoogle Scholar
  79. Rendell P (2002) Turing universality of the game of life. In: Adamatzky A (ed) Collision-based computing. Springer, London, pp 513–539CrossRefGoogle Scholar
  80. Rust AG (1998) Developmental self-organisation in artificial neural networks. PhD thesis, University of HertfordshireGoogle Scholar
  81. Schmitt FO (1962) Macromolecular specificity and biological memory. MIT Press, CambridgeGoogle Scholar
  82. Seelig G, Soloveichik D, Zhang DY, Winfree E (2006) Enzyme-free nucleic acid logic circuits. Science 314:1585–1588CrossRefGoogle Scholar
  83. Shapiro E, Gil B (2007) Logic goes in vitro. Nat Nanotechnol 2:84–85CrossRefGoogle Scholar
  84. Sienko T, Adamatzky A, Rambidi NG, Conrad M (eds) (2003) Molecular computing. MIT Press, CambridgezbMATHGoogle Scholar
  85. Sipper M (1996) Co-evolving non-uniform cellular automata to perform computations. Physica D 92:193–208MathSciNetzbMATHCrossRefGoogle Scholar
  86. Sipper M (1997) Evolution of parallel cellular machines: the cellular programming approach. Springer, HeidelbergCrossRefGoogle Scholar
  87. Sipper M (1999) The emergence of cellular computing. IEEE Comput 32(7):18–26CrossRefGoogle Scholar
  88. Sipper M (2002) Machine nature: the coming age of bio-inspired computing. McGraw-Hill, New YorkGoogle Scholar
  89. Sipper M, Ruppin E (1997) Co-evolving architectures for cellular machines. Physica D 99:428–441zbMATHCrossRefGoogle Scholar
  90. Sipper M, Sanchez E, Mange D, Tomassini M, Pérez-Uribe A, Stauffer A (1997a) A phylogenetic, ontogenetic, and epigenetic view of bio-inspired hardware systems. IEEE Trans Evol Comput 1(1):83–97CrossRefGoogle Scholar
  91. Sipper M, Goeke M, Mange D, Stauffer A, Sanchez E, Tomassini M (1997) The firefly machine: online evolware. In: Proceedings of the 1997 I.E. international conference on evolutionary computation (ICEC’97), Piscataway. IEEE Press, Piscataway, pp 181–186Google Scholar
  92. Sipser M (2006) Introduction to the theory of computation, 2nd edn. Thomson, BostonzbMATHGoogle Scholar
  93. Stahl WR, Goheen HE (1963) Molecular algorithms. J Theor Biol 5(2):266–287CrossRefGoogle Scholar
  94. Stauffer A, Mange D, Tempesti G, Teuscher C (2001) Bio watch: a giant electronic bio-inspired watch. In: Keymeulen D, Stoica A, Lohn J, Zebulum RS (eds) Proceedings of the third NASA/DoD workshop on evolvable hardware, EH-2001. IEEE Computer Society, Los Alamitos, pp 185–192CrossRefGoogle Scholar
  95. Stojanovic MN, Stefanovic D (2003) A deoxyribozyme-based molecular automaton. Nat Biotechnol 21:1069–1074CrossRefGoogle Scholar
  96. Sugita M (1961) Functional analysis of chemical systems in vivo using a logical circuit equivalent. J Theor Biol 1(2):415–430Google Scholar
  97. Sugita M (1963) Functional analysis of chemical systems in vivo using a logical circuit equivalent. In: the idea of a molecular automaton. J Theor Biol 4(2):179–192CrossRefGoogle Scholar
  98. Sugita M, Fukuda N (1963) Functional analysis of chemical systems in vivo using a logical circuit equivalent. III: analysis using a digital circuit combined with an analogue computer. J Theor Biol 5(3):412–425CrossRefGoogle Scholar
  99. Szostak JW, Bartel DP, Luisi PL (2001) Synthesizing life. Nature 409:387–390CrossRefGoogle Scholar
  100. Tempesti G, Mange D, Stauffer A, Teuscher C (2002) The biowall: an electronic tissue for prototyping bio-inspired systems. In: Stoica A, Lohn J, Katz R, Keymeulen D, Zebulum RS (eds) Proceedings of the 2002 NASA/DoD conference on evolvable hardware. IEEE Computer Society, Los Alamitos, pp 221–230CrossRefGoogle Scholar
  101. Teuscher C (2002) Turing’s connectionism. An investigation of neural network architectures. Springer, LondonzbMATHGoogle Scholar
  102. Teuscher C, Sipper M (2002) Hypercomputation: hype or computation? Commun ACM 45(8):23–24CrossRefGoogle Scholar
  103. The P systems web page. Accessed 12 July 2008
  104. Toffoli T, Margolus N (1987) Cellular automata machines. MIT Press, CambridgezbMATHGoogle Scholar
  105. Tomita M (2001) Whole-cell simulation: a grand challenge of the 21st century. Trends Biotechnol 19(6):205–210CrossRefGoogle Scholar
  106. Top500 supercomputing sites. Accessed 12 July 2008
  107. Turing AM (1937) On computable numbers, with an application to the Entscheidungsproblem. Proc Lond Math Soc 42:230–265; Corrections. Proc Lond Math Soc 43:544–546MathSciNetzbMATHCrossRefGoogle Scholar
  108. Turing AM (1950) Computing machinery and intelligence. Mind 59(236):433–460MathSciNetCrossRefGoogle Scholar
  109. Turing AM (1952) The chemical basis of morphogenesis. Philos Trans R Soc Lond B 237:37–72MathSciNetzbMATHCrossRefGoogle Scholar
  110. Turing AM (1969) Intelligent machinery. In: Meltzer B, Michie D (eds) Machine intelligence, vol 5. Edinburgh University Press, Edinburgh, pp 3–23Google Scholar
  111. Turing AM (1992) Intelligent machinery. In: Ince DC (ed) Collected works of A.M. Turing: mechanical intelligence. North-Holland, Amsterdam, pp 107–127Google Scholar
  112. Tyrrell A, Sanchez E, Floreano D, Tempesti G, Mange D, Moreno JM, Rosenberg J, Alessandro Villa EP (2003) Poetic tissue: an integrated architecture for bio-inspired hardware. In: Tyrrell AM, Haddow PC, Torresen J (eds) Evolvable systems: from biology to hardware. Proceedings of the 5th international conference (ICES2003). Lecture notes in computer science, vol 2606. Springer, Berlin, pp 129–140zbMATHGoogle Scholar
  113. Varela F, Maturana H, Uribe R (1974) Autopoiesis: the organization of living systems, its characterization and a model. BioSystems 5:187–196CrossRefGoogle Scholar
  114. Villasenor J, Mangione-Smith WH (1997) Configurable computing. Sci Am 276(6):54–59CrossRefGoogle Scholar
  115. von Neumann J (1966) Theory of self-reproducing automata. University of Illinois Press, UrbanaGoogle Scholar
  116. Warner JR, Rich A, Hall CE (1962) Electron microscope studies of ribosomal clusters synthesizing hemoglobin. Science 138(3548):1299–1403CrossRefGoogle Scholar
  117. Watson JD, Crick FHC (1953) A structure for deoxyribose nucleic acid. Nature 171:737–738CrossRefGoogle Scholar
  118. Watts DJ, Strogatz SH (1998) Collective dynamics of small-world networks. Nature 393:440–442zbMATHCrossRefGoogle Scholar
  119. Weiss R (2001) Cellular computation and communications using engineered genetic regulatory networks. PhD thesis, MIT Department of Electrical Engineering and Computer Science, CambridgeGoogle Scholar
  120. Wolfram S (1984) Cellular automata as models of complexity. Nature 311:419–424CrossRefGoogle Scholar

Books and Reviews

  1. Adamatzky A (ed) (2002) Collision-based computing. Springer, LondonzbMATHGoogle Scholar
  2. Adami C (1998) Introduction to artificial life. Springer, New YorkzbMATHCrossRefGoogle Scholar
  3. Amos M (2005) Theoretical and experimental DNA computation. Springer, BerlinzbMATHGoogle Scholar
  4. Bentley BJ (2001) Digital biology: now nature is transforming our technology. Headline Book Publishing, LondonGoogle Scholar
  5. Ehrenfeucht A, Harju T, Petre I, Prescott DM, Rozenberg G (2004) Computation in living cells: gene assembly in ciliates. Springer, BerlinzbMATHCrossRefGoogle Scholar
  6. Hey AJG (ed) (1998) Feynman and computation: exploring the limits of computers. Westview, BoulderzbMATHGoogle Scholar
  7. Landweber LF, Winfree E (eds) (2002) Evolution as computation. Springer, BerlinGoogle Scholar
  8. Paun G, Rozenberg G (2002) A guide to membrane computing. J Theory Comput Sci 287(1):73–100MathSciNetzbMATHCrossRefGoogle Scholar
  9. Petty MC, Bryce MR, Bloor D (eds) (1995) An introduction to molecular electronics. Oxford University Press, New YorkGoogle Scholar
  10. Pozrikidis C (ed) (2003) Modeling and simulation of capsules and biological cells. Chapman and Hall/CRC, Boca RatonzbMATHGoogle Scholar
  11. Trimberger SM (1994) Field-programmable gate array technology. Kluwer, BostonzbMATHCrossRefGoogle Scholar
  12. Wolfram S (2002) A new kind of science. Wolfram Media, ChampaignzbMATHGoogle Scholar
  13. Zauner KP (2005) Molecular information technology. Crit Rev Solid State Mater Sci 30(1):33–69CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Portland State UniversityPortlandUSA

Personalised recommendations