Advertisement

Reversible Computing

  • Kenichi MoritaEmail author
Reference work entry
Part of the Encyclopedia of Complexity and Systems Science Series book series (ECSSS)

Glossary

Billiard ball model

The billiard ball model (BBM) is a physical model of computation proposed by Fredkin and Toffoli (1982). It consists of idealized balls and reflectors. Balls can collide with other balls or reflectors. It is a reversible dynamical system, since it is assumed that collisions are elastic, and there is no friction. Fredkin and Toffoli showed that a reversible logic gate called Fredkin gate, which is known to be logically universal, can be embedded in BBM. Hence, a universal computer can be realized in the space of BBM.

Reversible cellular automaton

A cellular automaton (CA) consists of a large number of finite automata called cells interconnected uniformly, and each cell changes its state depending on its neighboring cells. A reversible cellular automaton (RCA) is one whose global function (i.e., a transition function from the configurations to the configurations) is injective. RCAs can be thought as spatiotemporal models of reversible physical systems as well...

Bibliography

Primary Literature

  1. Al-Rabadi A-N (2004) Reversible logic synthesis. Springer, Berlin, HeidelbergGoogle Scholar
  2. Angluin D (1982) Inference of reversible languages. J ACM 29:741–765MathSciNetCrossRefGoogle Scholar
  3. Barenco A, Bennett C-H, Cleve R, DiVincenzo DP, Margolus N, Shor P, Sleator T, Smolin J, Weinfurter H (1995) Elementary gates for quantum computation. Phys Rev A 52:3457–3467CrossRefGoogle Scholar
  4. Bennett C-H (1973) Logical reversibility of computation. IBM J Res Dev 17:525–532MathSciNetCrossRefGoogle Scholar
  5. Bennett C-H (1982) The thermodynamics of computation – a review. Int J Theor Phys 21:905–940CrossRefGoogle Scholar
  6. Bennett C-H (1987) Demons, engines, and the second law. Sci Am 257:108–111CrossRefGoogle Scholar
  7. Bennett C-H (1989) Time/space trade-offs for reversible computation. SIAM J Comput 18:766–776MathSciNetCrossRefGoogle Scholar
  8. Bennett C-H (2003) Notes on Landauer’s principle, reversible computation, and Maxwell’s Demon. Stud Hist Philos Mod Phys 34:501–510MathSciNetCrossRefGoogle Scholar
  9. Bennett C-H, Landauer R (1985) The fundamental physical limits of computation. Sci Am 253:38–46CrossRefGoogle Scholar
  10. Buhrman H, Tromp J, Vitányi P (2001) Time and space bounds for reversible simulation. In: Proceedings of the ICALP 2001, LNCS 2076. pp 1017–1027Google Scholar
  11. Cook M (2004) Universality in elementary cellular automata. Compl Syst 15:1–40MathSciNetzbMATHGoogle Scholar
  12. De Vos A (2010) Reversible computing: fundamentals, quantum computing, and applications. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  13. De Vos A, Desoete B, Adamski A, Pietrzak P, Sibinski M, Widerski T (2000) Design of reversible logic circuits by means of control gates. In: Soudris D, Pirsch P, Barke E (eds) Proceedings of the PATMOS 2000. LNCS 1918. pp 255–264Google Scholar
  14. Deutsch D (1985) Quantum theory, the Church-Turing principle and the universal quantum computer. Proc R Soc Lond A 400:97–117MathSciNetCrossRefGoogle Scholar
  15. Feynman R-P (1982) Simulating physics with computers. Int J Theor Phys 21:467–488MathSciNetCrossRefGoogle Scholar
  16. Feynman R-P (1996) In: Hey AJG, Allen RW (eds) Feynman lectures on computation. Perseus Books, ReadingGoogle Scholar
  17. Frank M-P (1999) Reversibility for efficient computing. PhD thesis, MITGoogle Scholar
  18. Frank M-P, Vieri C, Ammer M-J, Love N, Margolus N-H, Knight T-E (1998) A scalable reversible computer in silicon. In: Calude CS, Casti J, Dinneen MJ (eds) Unconventional models of computation. Springer, Singapore, pp 183–200Google Scholar
  19. Fredkin E, Toffoli T (1982) Conservative logic. Int J Theor Phys 21:219–253MathSciNetCrossRefGoogle Scholar
  20. Gruska J (1999) Quantum computing. McGraw-Hill, LondonzbMATHGoogle Scholar
  21. Jacopini G, Mentrasti P, Sontacchi G (1990) Reversible Turing machines and polynomial time reversibly computable functions. SIAM J Discret Math 3:241–254MathSciNetCrossRefGoogle Scholar
  22. Kari J (2005) Reversible cellular automata. In: de Felice C, Restivo A (eds) Proceedings of the DLT 2005. LNCS 3572. pp 57–68Google Scholar
  23. Keyes R-W, Landauer R (1970) Minimal energy dissipation in logic. IBM J Res Dev 14:152–157CrossRefGoogle Scholar
  24. Kondacs A, Watrous J (1997) On the power of quantum finite state automata. In: Proceedings of the 36th FOCS. IEEE, pp 66–75Google Scholar
  25. Kudlek M, Rogozhin Y (2002) A universal Turing machine with 3 states and 9 symbols. In: Kuich W, Rozenberg G, Salomaa A (eds) Proceedings of the DLT 2001. LNCS 2295. pp 311–318Google Scholar
  26. Kutrib M, Malcher A (2012) Reversible pushdown automata. J Comput Syst Sci 78:1814–1827MathSciNetCrossRefGoogle Scholar
  27. Kutrib M, Malcher A (2013) One-way reversible multi-head finite automata. In: Glück R, Yokoyama T (eds) Proceedings of the RC 2012. LNCS 7581. pp 14–28Google Scholar
  28. Landauer R (1961) Irreversibility and heat generation in the computing process. IBM J Res Dev 5:183–191MathSciNetCrossRefGoogle Scholar
  29. Lange K-J, McKenzie P, Tapp A (2000) Reversible space equals deterministic space. J Comput Syst Sci 60:354–367MathSciNetCrossRefGoogle Scholar
  30. Lecerf Y (1963) Machines de Turing réversibles – récursive insolubilité en nN de l’équation u = θnu, où θ est un isomorphisme de codes. C R Hebd Seances Acad Sci 257:2597–2600MathSciNetGoogle Scholar
  31. Lee J, Peper F, Adachi S, Morita K (2004) Universal delay-insensitive circuits with bidirectional and buffering lines. IEEE Trans Comput 53:1034–1046CrossRefGoogle Scholar
  32. Lee J, Peper F, Adachi S, Morita K (2008) An asynchronous cellular automaton implementing 2-state 2-input 2-output reversed-twin reversible elements. In: Umeo H et al (eds) Proceedings of the ACRI 2008. LNCS 5191. pp 67–76Google Scholar
  33. Merkle R-C (1993) Reversible electronic logic using switches. Nanotechnology 4:20–41Google Scholar
  34. Minsky M-L (1967) Computation: finite and infinite machines. Prentice-Hall, Englewood CliffszbMATHGoogle Scholar
  35. Morita K (1990) A simple construction method of a reversible finite automaton out of Fredkin gates, and its related problem. Trans IEICE Jpn E–73:978–984Google Scholar
  36. Morita K (1996) Universality of a reversible two-counter machine. Theor Comput Sci 168:303–320MathSciNetCrossRefGoogle Scholar
  37. Morita K (2001) A simple reversible logic element and cellular automata for reversible computing. In: Margenstern M, Rogozhin Y (eds) Proceedings of the MCU 2001. LNCS 2055. pp 102–113Google Scholar
  38. Morita K (2003) A new universal logic element for reversible computing. In: Martin-Vide C, Mitrana V (eds) Grammars and automata for string processing. Taylor & Francis, London, pp 285–294CrossRefGoogle Scholar
  39. Morita K (2008) Reversible computing and cellular automata – a survey. Theor Comput Sci 395:101–131Google Scholar
  40. Morita K (2011) Two-way reversible multi-head finite automata. Fundam Inform 110:241–254MathSciNetzbMATHGoogle Scholar
  41. Morita K (2012) Reversible computing. Kindai Kagaku-sha Co., Ltd., Tokyo. ISBN 978-4-7649-0422-4 (in Japanese)CrossRefGoogle Scholar
  42. Morita K (2013) A deterministic two-way multi-head finite automaton can be converted into a reversible one with the same number of heads. In: Glück R, Yokoyama T (eds) Proceedings of the RC 2012. LNCS 7581. pp 29–43. Slides with figures of computer simulation: Hiroshima University Institutional Repository. http://ir.lib.hiroshima-u.ac.jp/00033875
  43. Morita K (2014a) Reversibility in space-bounded computation. Int J Gen Syst 43:697–712MathSciNetCrossRefGoogle Scholar
  44. Morita K (2014b) Reversible Turing machines with a small number of states. In: Bensch S, Freund R, Otto F (eds) Proceedings of the NCMA 2014. pp 179–190. Slides with figures of computer simulation: Hiroshima University Institutional Repository. http://ir.lib.hiroshima-u.ac.jp/00036075
  45. Morita K (2015a) Constructing reversible Turing machines by reversible logic element with memory. In: Adamatzky A (ed) Automata, universality, computation. Springer, Cham, pp 127–138. Slides with figures of computer simulation: Hiroshima University Institutional Repository. http://ir.lib.hiroshima-u.ac.jp/00029224
  46. Morita K (2015b) Universal reversible Turing machines with a small number of tape symbols. Fundam Inform 138:17–29MathSciNetzbMATHGoogle Scholar
  47. Morita K (2017) Two small universal reversible Turing machines. In: Adamatzky A (eds) Advances in unconventional computing vol.1: theory. Springer, Cham, pp 221–237Google Scholar
  48. Morita K, Yamaguchi Y (2007) A universal reversible Turing machine. In: Durand-Lose JO, Margenstern M (eds) Proceedings of the MCU 2007. LNCS 4664. pp 90–98Google Scholar
  49. Morita K, Shirasaki A, Gono Y (1989) A 1-tape 2-symbol reversible Turing machine. Trans IEICE Jpn E–72:223–228Google Scholar
  50. Morita K, Ogiro T, Tanaka K, Kato H (2005) Classification and universality of reversible logic elements with one-bit memory. In: Margenstern M (eds) Proceedings of the MCU 2004. LNCS 3354. pp 245–256Google Scholar
  51. Morita K, Ogiro T, Alhazov A, Tanizawa T (2012) Non-degenerate 2-state reversible logic elements with three or more symbols are all universal. J Mult Valued Log Soft Comput 18:37–54MathSciNetzbMATHGoogle Scholar
  52. Mukai Y, Morita K (2012) Realizing reversible logic elements with memory in the billiard ball model. Int J Unconv Comput 8:47–59Google Scholar
  53. Mukai Y, Ogiro T, Morita K (2014) Universality problems on reversible logic elements with 1-bit memory. Int J Unconv Comput 10:353–373Google Scholar
  54. Neary T, Woods D (2009) Four small universal Turing machines. Fundam Inform 91:123–144MathSciNetzbMATHGoogle Scholar
  55. Ogiro T, Kanno A, Tanaka K, Kato H, Morita K (2005) Nondegenerate 2-state 3-symbol reversible logic elements are all universal. Int J Unconv Comput 1:47–67Google Scholar
  56. Peper F, Lee J, Adachi S, Mashiko S (2003) Laying out circuits on asynchronous cellular arrays: a step towards feasible nanocomputers. Nanotechnology 14:469–485CrossRefGoogle Scholar
  57. Petri C-A (1967) Grundsätzliches zur beschreibung diskreter prozesse. In: Händler W, Peschl E, Unger H (eds) Proceedings of the 3rd Colloquium über Automatentheorie. Birkhäuser Verlag, Basel, pp 121–140Google Scholar
  58. Pin J-E (1992) On reversible automata. In: Simon I (ed) Proceedings of the LATIN ‘92. LNCS 583. pp 401–416Google Scholar
  59. Rogozhin Y (1996) Small universal Turing machines. Theor Comput Sci 168:215–240MathSciNetCrossRefGoogle Scholar
  60. Saeedi M, Markov I-L (2013) Synthesis and optimization of reversible circuits – a survey. ACM Comput Surv 45:21CrossRefGoogle Scholar
  61. Shende V-V, Prasad A-K, Markov I-L, Hayes J-P (2003) Synthesis of reversible logic circuits. IEEE Trans Comput Aided Des Integr Circ Syst 22:710–722CrossRefGoogle Scholar
  62. Thapliyal H, Ranganathan N (2010) Design of reversible sequential circuits optimizing quantum cost, delay, and garbage outputs. ACM J Emerg Technol Comput Syst 6:14:1–14:31CrossRefGoogle Scholar
  63. Toffoli T (1977) Computation and construction universality of reversible cellular automata. J Comput Syst Sci 15:213–231MathSciNetCrossRefGoogle Scholar
  64. Toffoli T (1980) Reversible computing. In: de Bakker JW, van Leeuwen J (eds) Automata, languages and programming. LNCS 85. Springer, Berlin, pp 632–644Google Scholar
  65. Toffoli T (1981) Bicontinuous extensions of invertible combinatorial functions. Math Syst Theory 14:12–23MathSciNetCrossRefGoogle Scholar
  66. Toffoli T, Margolus N (1990) Invertible cellular automata: a review. Phys D 45:229–253MathSciNetCrossRefGoogle Scholar
  67. Wille R, Drechsler R (2010) Towards a design flow for reversible logic. Springer, DordrechtGoogle Scholar

Books and Reviews

  1. Adamatzky A (ed) (2002) Collision-based computing. Springer, LondonzbMATHGoogle Scholar
  2. Bennett CH (1988) Notes on the history of reversible computation. IBM J Res Dev 32:16–23MathSciNetCrossRefGoogle Scholar
  3. Milburn GJ (1998) The Feynman processor. Perseus Books, ReadingzbMATHGoogle Scholar
  4. Morita K (2017) Theory of reversible computing, Springer, TokyoGoogle Scholar
  5. Vitanyi P (2005) Time, space, and energy in reversible computing. In: Proceedings of the 2005 ACM international conference on computing frontiers, pp 435–444Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Hiroshima UniversityHigashi-HiroshimaJapan

Personalised recommendations