Advertisement

Reaction-Diffusion Computing

  • Andrew AdamatzkyEmail author
  • Benjamin De Lacy Costello
Reference work entry
Part of the Encyclopedia of Complexity and Systems Science Series book series (ECSSS)

Glossary

Belousov–Zhabotinsky (BZ) reaction

is a term applied to a group of chemical reactions in which an organic substrate (typically malonic acid) is oxidized by bromate ions in the presence of acid and a one electron transfer redox catalyst (e.g., ferroin, or the light-sensitive ruthenium complex). During the BZ reaction, there are three major interlinked processes – firstly the reduction of the inhibitor (bromideions) via reaction with bromate ions, secondly autocatalysis in bromous acid and the oxidation of the redox catalyst, and finally reduction of the redox catalyst and production of the inhibitor (bromide ions) via a reaction with the organic substrate and its brominated derivative. The reaction produces oscillations in well-stirred reactors and traveling waves in thin layers, which may be visualized if the redox behavior of the catalyst is accompanied by a change of color (e.g., the color is changed from orange to blue when ferroin is oxidized to ferriin).

Excitable medium

i...

Bibliography

  1. Adamatzky A (1994) Reaction-diffusion algorithm for constructing discrete generalized Voronoi diagram. Neural Netw World 6:635–643Google Scholar
  2. Adamatzky A (1996) Voronoi-like partition of lattice in cellular automata. Math Comput Model 23:51–66MathSciNetCrossRefGoogle Scholar
  3. Adamatzky A (2001) Computing in nonlinear media and automata collectives. IoP Publishing, BristolzbMATHGoogle Scholar
  4. Adamatzky A (ed) (2002) Collision-based computing. Springer, LondonzbMATHGoogle Scholar
  5. Adamatzky A (2004) Collision-based computing in Belousov–Zhabotinsky medium. Chaos Solitons Fractals 21:1259–1264CrossRefGoogle Scholar
  6. Adamatzky A (2015) Binary full adder, made of fusion gates, in a subexcitable Belousov-Zhabotinsky system. Phys Rev E 92(3):032811CrossRefGoogle Scholar
  7. Adamatzky A, De Lacy Costello BPJ (2002a) Experimental logical gates in a reaction-diffusion medium: the XOR gate and beyond. Phys Rev E 66:046112CrossRefGoogle Scholar
  8. Adamatzky A, De Lacy Costello B (2002b) Experimental reaction-diffusion pre-processor for shape recognition. Phys Lett A 297:344–352CrossRefGoogle Scholar
  9. Adamatzky A, De Lacy Costello BPJ (2002c) Collision-free path planning in the Belousov–Zhabotinsky medium assisted by a cellular automaton. Naturwissenschaften 89:474–478CrossRefGoogle Scholar
  10. Adamatzky A, De Lacy Costello B (2007) Binary collisions between wave-fragments in a subexcitable Belousov-Zhabotinsky medium. Chaos Solitons Fractals 34:307–315MathSciNetCrossRefGoogle Scholar
  11. Adamatzky A, Teuscher C (eds) (2006) From Utopian to genuine unconventional computers. Luniver Press, BeckingtonGoogle Scholar
  12. Adamatzky A, Tolmachiev D (1997) Chemical processor for computation of skeleton of planar shape. Adv Mater Opt Electron 7:135–139CrossRefGoogle Scholar
  13. Adamatzky A, De Lacy Costello B, Melhuish C, Ratcliffe N (2003) Experimental reaction-diffusion chemical processors for robot path planning. J Intell Robot Syst 37:233–249CrossRefGoogle Scholar
  14. Adamatzky A, De Lacy Costello B, Melhuish C, Ratcliffe N (2004) Experimental implementation of mobile robot taxis with onboard Belousov–Zhabotinsky chemical medium. Mater Sci Eng C 24:541–548CrossRefGoogle Scholar
  15. Adamatzky A, De Lacy Costello B, Asai T (2005) Reaction diffusion computers. Elsevier, AmsterdamGoogle Scholar
  16. Adamatzky A, de Lacy Costello B, Skachek S, Melhuish C (2006) Manipulating objects with chemical waves: open loop case of experimental Belousov–Zhabotinsky medium coupled with simulated actuator array. Phys Lett A 350(3):201–209Google Scholar
  17. Adamatzky A, Bull L, De Lacy Costello B, Stepney S, Teuscher C (eds) (2007) Unconventional computing 2007. Luniver Press, BeckingtonGoogle Scholar
  18. Agladze K, Obata S, Yoshikawa K (1995) Phase-shift as a basis of image processing in oscillating chemical medium. Physica D 84:238–245CrossRefGoogle Scholar
  19. Agladze K, Aliev RR, Yamaguhi T, Yoshikawa K (1996) Chemical diode. J Phys Chem 100:13895–13897CrossRefGoogle Scholar
  20. Agladze K, Magome N, Aliev R, Yamaguchi T, Yoshikawa K (1997) Finding the optimal path with the aid of chemical wave. Physica D 106:247–254CrossRefGoogle Scholar
  21. Akl SG, Calude CS, Dinneen MJ, Rozenberg G (eds) (2007) Unconventional computation: 6th international conference, UC 2007, Kingston, 13–17 Aug 2007, Proceedings. SpringerGoogle Scholar
  22. Berlekamp ER, Conway JH, Guy RL (1982) Winning ways for your mathematical plays, vol 2. Academic Press, New YorkGoogle Scholar
  23. Blum HA (1967) Transformation for extracting new descriptors of shape. In: Wathen-Dunn W (ed) Models for the perception of speech and visual form. MIT Press, Cambridge, MA, pp 362–380Google Scholar
  24. Blum H (1973) Biological shape and visual science. J Theor Biol 38:205–287CrossRefGoogle Scholar
  25. Calabi L, Hartnett WE (1968) Shape recognition, prairie fires, convex deficiencies and skeletons. Am Math Mon 75:335–342MathSciNetCrossRefGoogle Scholar
  26. Courant R, Robbins H (1941) What is mathematics? Oxford University Press, OxfordGoogle Scholar
  27. De Lacy Costello BPJ (2003) Constructive chemical processors – experimental evidence that shows that this class of programmable pattern forming reactions exist at the edge of a highly non-linear region. Int J Bifurcat Chaos 13:1561–1564CrossRefGoogle Scholar
  28. De Lacy Costello B, Adamatzky A (2003) On multitasking in parallel chemical processors: experimental findings. Int J Bifurcat Chaos 13:521–533CrossRefGoogle Scholar
  29. de Lacy Costello BPJ, Hantz P, Ratcliffe NM (2004a) Voronoi diagrams generated by regressing edges of precipitation fronts. J Chem Phys 120(5):2413–2416CrossRefGoogle Scholar
  30. De Lacy Costello BPJ, Adamatzky A, Ratcliffe NM, Zanin A, Purwins HG, Liehr A (2004b) The formation of Voronoi diagrams in chemical and physical systems: Experimental findings and theoretical models. Int J Bifurcat Chaos 14(7):2187–2210MathSciNetCrossRefGoogle Scholar
  31. de Lacy Costello B, Toth R, Stone C, Adamatzky A, Bull L (2009) Implementation of glider guns in the light-sensitive Belousov-Zhabotinsky medium. Phys Rev E 79(2):026114Google Scholar
  32. Dupont C, Agladze K, Krinsky V (1998) Excitable medium with left–right symmetry breaking. Physica A 249:47–52CrossRefGoogle Scholar
  33. Field RJ, Winfree AT (1979) Travelling waves of chemical activity in the Zaikin–Zhabotinsky–Winfree reagent. J Chem Educ 56:754CrossRefGoogle Scholar
  34. Fredkin F, Toffoli T (1982) Conservative logic. Int J Theor Phys 21:219–253MathSciNetCrossRefGoogle Scholar
  35. Fuerstman MJ, Deschatelets P, Kane R, Schwartz A, Kenis PJA, Deutch JM, Whitesides GM (2003) Langmuir 19:4714CrossRefGoogle Scholar
  36. Gorecka J, Gorecki J (2003) T-shaped coincidence detector as a band filter of chemical signal frequency. Phys Rev E 67:067203CrossRefGoogle Scholar
  37. Gorecki J, Yoshikawa K, Igarashi Y (2003) On chemical reactors that can count. J Phys Chem A 107:1664–1669CrossRefGoogle Scholar
  38. Gorecki J, Gorecka JN, Yoshikawa K, Igarashi Y, Nagahara H (2005) Phys Rev E 72:046201CrossRefGoogle Scholar
  39. Hwang YK, Ahuja N (1992) A potential field approach to path planning. IEEE Trans Robot Autom 8:23–32CrossRefGoogle Scholar
  40. Ichino T, Igarashi Y, Motoike IN, Yoshikawa K (2003) Different operations on a single circuit: field computation on an excitable chemical system. J Chem Phys 118:8185–8190CrossRefGoogle Scholar
  41. Klein R (1990) Concrete and abstract Voronoi diagrams. Springer, BerlinzbMATHGoogle Scholar
  42. Kuhnert L (1986a) Photochemische Manipulation von chemischen Wellen. Naturwissenschaften 76:96–97CrossRefGoogle Scholar
  43. Kuhnert L (1986b) A new photochemical memory device in a light sensitive active medium. Nature 319:393CrossRefGoogle Scholar
  44. Kuhnert L, Agladze KL, Krinsky VI (1989) Image processing using light–sensitive chemical waves. Nature 337:244–247CrossRefGoogle Scholar
  45. Kusumi T, Yamaguchi T, Aliev R, Amemiya T, Ohmori T, Hashimoto H, Yoshikawa K (1997) Numerical study on time delay for chemical wave transmission via an inactive gap. Chem Phys Lett 271:355–360CrossRefGoogle Scholar
  46. Lemmon MD (1991) 2-degree-of-freedom robot path planning using cooperative neural fields. Neural Comput 3:350–362CrossRefGoogle Scholar
  47. Margolus N (1984) Physics-like models of computation. Physica D 10:81–95MathSciNetCrossRefGoogle Scholar
  48. Mills JW (2008) The nature of the extended analog computer. Physica D 237(9):1235–1256Google Scholar
  49. Motoike IN, Adamatzky A (2004) Three-valued logic gates in reaction-diffusion excitable media. Chaos Solitons Fractals 24:107–114MathSciNetCrossRefGoogle Scholar
  50. Motoike I, Yoshikawa K (1999) Information operations with an excitable field. Phys Rev E 59:5354–5360CrossRefGoogle Scholar
  51. Motoike IN, Yoshikawa K (2003) Information operations with multiple pulses on an excitable field. Chaos Solitons Fractals 17:455–461CrossRefGoogle Scholar
  52. Motoike IN, Yoshikawa K, Iguchi Y, Nakata S (2001) Real-time memory on an excitable field. Phys Rev E 63:036220CrossRefGoogle Scholar
  53. Nakagaki T, Yamada H, Tóth A (2001) Biophys Chem 92:47CrossRefGoogle Scholar
  54. Rambidi NG (1997) Biomolecular computer: roots and promises. Biosystems 44:1–15CrossRefGoogle Scholar
  55. Rambidi NG (1998) Neural network devices based on reaction-diffusion media: an approach to artificial retina. Supramol Sci 5:765–767CrossRefGoogle Scholar
  56. Rambidi N (2003) Chemical-based computing and problems of high computational complexity: the reaction-diffusion paradigm. In: Seinko T, Adamatzky A, Rambidi N, Conrad M (eds) Molecular computing. MIT Press, Cambridge, MAzbMATHGoogle Scholar
  57. Rambidi NG, Yakovenchuk D (2001) Chemical reaction-diffusion implementation of finding the shortest paths in a labyrinth. Phys Rev E 63:026607CrossRefGoogle Scholar
  58. Rambidi NG, Shamayaev KR, Peshkov GY (2002) Image processing using light-sensitive chemical waves. Phys Lett A 298:375–382CrossRefGoogle Scholar
  59. Saltenis V (1999) Simulation of wet film evolution and the Euclidean Steiner problem. Informatica 10:457–466zbMATHGoogle Scholar
  60. Sendiña-Nadal I, Mihaliuk E, Wang J, Pérez-Muñuzuri V, Showalter K (2001) Wave propagation in subexcitable media with periodically modulated excitability. Phys Rev Lett 86:1646–1649CrossRefGoogle Scholar
  61. Shirakawa T, Adamatzky A, Gunji YP, Miyake Y (2009) On simultaneous construction of Voronoi diagram and Delaunay triangulation by Physarum polycephalum. Int J Bifurcat Chaos 19(9):3109–3117Google Scholar
  62. Sielewiesiuk J, Gorecki J (2001) Logical functions of a cross junction of excitable chemical media. J Phys Chem A 105:8189–8195CrossRefGoogle Scholar
  63. Sienko T, Adamatzky A, Rambidi N, Conrad M (eds) (2003) Molecular computing. MIT Press, Cambridge, MAzbMATHGoogle Scholar
  64. Skachek S, Adamatzky A, Melhuish C (2005) Manipulating objects by discrete excitable media coupled with contact-less actuator array: open-loop case. Chaos Solitons Fractals 26:1377–1389CrossRefGoogle Scholar
  65. Steinbock O, Tóth A, Showalter K (1995) Navigating complex labyrinths: optimal paths from chemical waves. Science 267:868–871CrossRefGoogle Scholar
  66. Steinbock O, Kettunen P, Showalter K (1996) Chemical wave logic gates. J Phys Chem 100(49):18970CrossRefGoogle Scholar
  67. Tolmachiev D, Adamatzky A (1996) Chemical processor for computation of Voronoi diagram. Adv Mater Opt Electron 6:191–196CrossRefGoogle Scholar
  68. Tóth A, Showalter K (1995) Logic gates in excitable media. J Chem Phys 103:2058–2066CrossRefGoogle Scholar
  69. Toth R, Stone C, Adamatzky A, de Lacy Costello B, Bull L (2009) Experimental validation of binary collisions between wave fragments in the photosensitive Belousov -Zhabotinsky reaction. Chaos, Solitons Fractals 41(4):1605–1615Google Scholar
  70. Yokoi H, Adamatzky A, De Lacy Costello B, Melhuish C (2004) Excitable chemical medium controlled by a robotic hand: closed loop experiments. Int J Bifurcat Chaos 14:3347–3354CrossRefGoogle Scholar
  71. Zaikin AN, Zhabotinsky AM (1970) Concentration wave propagation in two–dimensional liquid–phase self–oscillating system. Nature 225:535CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Unconventional Computing CentreUniversity of the West of EnglandBristolUK
  2. 2.Centre for Analytical Chemistry and Smart MaterialsUniversity of the West of EnglandBristolUK

Personalised recommendations