• Ferdinand PeperEmail author
Reference work entry
Part of the Encyclopedia of Complexity and Systems Science Series book series (ECSSS)


Adiabatic switching

Switching with asymptotically zero speed with the aim of reducing power consumption in a circuit.

Asynchronous circuit

Circuit that is designed to work in the absence of a clock.

Babbage engine

Mechanical calculator built by Charles Babbage in the early nineteenth century.

Bottom-up fabrication

Fabrication method employing the natural ability of physical structures (including atoms and molecules) to organize themselves into desired structures.

Brownian motion

Random movement of micrometer-sized particles due to collisions with molecules. The term is also used to indicate random movement of smaller-sized particles, or the mathematical model of such movements.

Carbon nanotube

Nanometer-scale tube consisting of a graphite sheet rolled up into a seamless cylinder. Carbon nanotubes intended for nanoelectronic applications are mainly single-walled.

Cellular automaton

Discrete regular array of cells, each of which is in one of a finite number of states. A cell is...


  1. Adachi S, Peper F, Lee J (2004) Computation by asynchronously updating cellular automata. J Stat Phys 114(1/2):261–289MathSciNetzbMATHCrossRefGoogle Scholar
  2. Adamatzky A (2002) New media for collision-based computing. In: Collision-based computing. Springer, London, pp 411–442zbMATHCrossRefGoogle Scholar
  3. Adleman LM (1994) Molecular computation of solutions to combinatorial problems. Science 266(11):1021–1024CrossRefGoogle Scholar
  4. Appenzeller J, Joselevich E, Hönlein W (2003) Carbon nanotubes for data processing. In: Nanoelectronics and information technology. Wiley, Berlin, pp 473–499Google Scholar
  5. Athas WC, Svensson LJ, Koller JG, Tzartzanis N, Chou EYC (1994) Low-power digital systems based on adiabatic-switching principles. IEEE Trans Very Large Scale Integr Syst 2(4):398–407CrossRefGoogle Scholar
  6. Aviram A, Ratner MA (1974) Molecular rectifiers. Chem Phys Lett 29(2):277–283CrossRefGoogle Scholar
  7. Bahar RI, Hammerstrom D, Harlow J, Joyner WH Jr, Lau C, Marculescu D, Orailoglu A, Pedram M (2007) Architectures for silicon nanoelectronics and beyond. Computer 40(1):25–33CrossRefGoogle Scholar
  8. Ball P (2006) Champing at the bits. Nature 440(7083):398–401CrossRefGoogle Scholar
  9. Banu M, Prodanov V (2007) Ultimate VLSI clocking using passive serial distribution. In: Future trends in microelectronics: up the nano creek. Wiley, Hoboken, pp 259–276Google Scholar
  10. Bashirullah R, Liu W (2002) Raised cosine approximation signalling technique for reduced simultaneous switching noise. Electron Lett 38(21):1256–1258CrossRefGoogle Scholar
  11. Beckett P, Jennings A (2002) Towards nanocomputer architecture. In: Lai F, Morris J (eds) Proceedings of 7th Asia-Pacific computer systems architecture conference ACSAC’2002 (Conference on research and practice in information technology), vol 6. Australian Computer Society, DarlinghurstGoogle Scholar
  12. Benioff P (1980) The computer as a physical system: a microscopic quantum mechanical Hamiltonian model of computers as represented by Turing machines. J Stat Phys 22(5):563–591MathSciNetzbMATHCrossRefGoogle Scholar
  13. Benioff P (1984) Comment on: dissipation in computation. Phys Rev Lett 53(12):1203CrossRefGoogle Scholar
  14. Benjamin SC, Johnson NF (1997) A possible nanometer-scale computing device based on an adding cellular automaton. Appl Phys Lett 70(17):2321–2323CrossRefGoogle Scholar
  15. Benjamin SC, Johnson NF (1999) Cellular structures for computation in the quantum regime. Phys Rev A 60(6):4334–4337CrossRefGoogle Scholar
  16. Bennett CH (1973) Logical reversibility of computation. IBM J Res Dev 17(6):525–532MathSciNetzbMATHCrossRefGoogle Scholar
  17. Bennett CH (1982) The thermodynamics of computation – a review. Int J Theor Phys 21(12):905–940CrossRefGoogle Scholar
  18. Bennett CH (1984) Thermodynamically reversible computation. Phys Rev Lett 53(12):1202CrossRefGoogle Scholar
  19. Bennett CH (1988) Notes on the history of reversible computation. IBM J Res Dev 32(1):16–23MathSciNetCrossRefGoogle Scholar
  20. Biafore M (1994) Cellular automata for nanometer-scale computation. Physica D 70:415–433zbMATHCrossRefGoogle Scholar
  21. Birge RR, Lawrence AF, Tallent JR (1991) Quantum effects, thermal statistics and reliability of nanoscale molecular and semiconductor devices. Nanotechnology 2(2):73–87CrossRefGoogle Scholar
  22. Bohr MT, Chau RS, Ghani T, Mistry K (2007) The high k solution. IEEE Spectr 44(10):23–29CrossRefGoogle Scholar
  23. Bourianoff G (2003) The future of nanocomputing. Computer 36(8):44–53CrossRefGoogle Scholar
  24. Brillouët M (2007) Physical limits of silicon CMOS: real showstopper or wrong problem? In: Future trends in microelectronics. Up the Nano Creek Wiley, Hoboken, pp 179–191Google Scholar
  25. Carmona J,Cortadella J, Takada Y, Peper F (2006) From molecular interactions to gates: a systematic approach. In: ICCAD ’06: Proceedings of the 2006 IEEE/ACM international conference on computer-aided design, San Jose, 5–9 Nov 2008Google Scholar
  26. Carter FL (1983a) The chemistry in future molecular computers. In: Computer applications in chemistry, proceedings of 6th international conference on computers in chemical research and education. Elsevier, Amsterdam, pp 225–262Google Scholar
  27. Carter FL (1983b) Molecular level fabrication techniques and molecular electronic devices. J Vac Sci Technol B 1(4):959–968CrossRefGoogle Scholar
  28. Carter FL (1984) The molecular device computer: point of departure for large scale cellular automata. Physica D 10(1–2):175–194MathSciNetCrossRefGoogle Scholar
  29. Cavin RK,Zhirnov VV, Hutchby JA, Bourianoff GI (2005) Energy barriers, demons, and minimum energy operation of electronic devices Proc SPIE 5844, pp 1–9Google Scholar
  30. Ceruzzi P (1998) A history of modern computing. MIT Press, CambridgeGoogle Scholar
  31. Chan SC, Shepard KL, Restle PJ (2005) Uniform-phase uniform-amplitude resonant-load global clock distributions. IEEE J Solid-State Circuits 40(1):102–109CrossRefGoogle Scholar
  32. Chen Y, Jung GY, Ohlberg DAA, Li X, Steward DR, Jeppesen JO, Nielsen KA, Stoddard JF, Williams RS (2003) Nanoscale molecular-switch crossbar circuits. Nanotechnology 14(4):462–468CrossRefGoogle Scholar
  33. Choi H, Mody C (2007) Molecular electronics in the longue durée: the microelectronics origins of nanotechnology. In: Joint Wharton-chemical heritage foundation symposium on the social studies of nanotechnology, Philadelphia, 7–8 Jun 2007Google Scholar
  34. Chou SY, Krauss PR, Renstrom PJ (1996) Imprint lithography with 25-nanometer resolution. Science 272(5258):85–87CrossRefGoogle Scholar
  35. Chua LO, Yang L (1988) Cellular neural networks: theory. Circuit Syst IEEE Trans 35(10):1257–1272MathSciNetzbMATHCrossRefGoogle Scholar
  36. Collier CP, Wong EW, Belohradský M, Raymo FM, Stoddart JF, Kuekes PJ, Williams RS, Heath JR (1999) Electronically configurable molecular-based logic gates. Science 285(5426):391–394CrossRefGoogle Scholar
  37. Collier CP, Mattersteig G, Wong EW, Luo Y, Beverly K, Sampaio J, Raymo FM, Stoddart JF, Heath JR (2000) A [2]Catenane-based solid state electronically reconfigurable switch. Science 289(5482):1172–1175CrossRefGoogle Scholar
  38. Constantinescu C (2007) Impact of intermittent faults on nanocomputing devices. In: Workshop on dependable and secure nanocomputing, Edinburgh, 28 Jun 2007Google Scholar
  39. Cowburn RP, Welland ME (2000) Room temperature magnetic quantum cellular automata. Science 287(5457):1466–1468CrossRefGoogle Scholar
  40. Cui Y, Lieber CM (2001) Functional nanoscale electronic devices assembled using silicon nanowire building blocks. Science 291(5505):851–853CrossRefGoogle Scholar
  41. Cui Y, Lieber C, Lauhon L, Gudiksen M, Wang J (2001) Diameter-controlled synthesis of single crystal silicon nanowires. Appl Phys Lett 78(15):2214–2216CrossRefGoogle Scholar
  42. Dasmahapatra S, Werner J, Zauner KP (2006) Noise as a computational resource. Int J Unconv Comput 2(4):305–319Google Scholar
  43. Davari B (1999) CMOS technology: present and future. In: Proceedings of IEEE symposium on VLSI circuits. Digest of technical papers, pp 5–9Google Scholar
  44. Davis A, Nowick SM (1997) An introduction to asynchronous circuit design. Tech Rep UUCS-97–013, Computer Science Department, University of UtahGoogle Scholar
  45. Davis BA, Principe JC, Fortes JAB (2004) Design and performance analysis of a novel nanoscale associative memory. In: Proceedings of 4th IEEE conference on nanotechnology, pp 314–316Google Scholar
  46. Debray P, Raichev OE, Rahman M, Akis R, Mitchel WC (1999) Ballistic transport of electrons in T-shaped quantum waveguides. Appl Phys Lett 74(5):768–770CrossRefGoogle Scholar
  47. DeHon A (2003) Array-based architecture for FET-based nanoscale electronics. IEEE Trans Nanotechnol 2(1):23–32MathSciNetCrossRefGoogle Scholar
  48. DeHon A (2004) Law of large numbers system design. In: Nano, quantum and molecular computing: implications to high level design and validation. Kluwer, Norwell, pp 213–241CrossRefGoogle Scholar
  49. DeHon A (2005) Nanowire-based programmable architectures. ACM J Emerg Technol Comput Syst 1(2):109–162MathSciNetCrossRefGoogle Scholar
  50. DeHon A, Lincoln P, Savage JE (2003) Stochastic assembly of sublithographic nanoscale interfaces. IEEE Trans Nanotechnol 2(3):165–174CrossRefGoogle Scholar
  51. Dennard RH, Gaensslen FH, Yu HN, Rideout VL, Bassous E, LeBlanc AR (1974) Design of ion-implanted mosfets with very small physical dimensions. IEEE J Solid-State Circ 9(5):256–268CrossRefGoogle Scholar
  52. Depledge PG (1981) Fault-tolerant computer systems. IEE Proc A 128(4):257–272Google Scholar
  53. Diehl MR, Yaliraki SN, Beckman RA, Barahona M, Heath JR (2002) Self-assembled deterministic carbon nanotube wiring networks. Angew Chem Int Ed 41(2):353–356CrossRefGoogle Scholar
  54. Dobrushin RL, Ortyukov SI (1977) Upper bound for the redundancy of self-correcting arrangements of unreliable functional elements. Probl Inform Transm 13(3):203–218zbMATHGoogle Scholar
  55. Drexler KE (1986) Engines of creation. Anchor Books, New YorkGoogle Scholar
  56. Drexler KE (1992) Nanosystems: molecular machinery, manufacturing, and computation. Wiley, New YorkGoogle Scholar
  57. Durbeck LJK, Macias NJ (2001) The cell matrix: an architecture for nanocomputing. Nanotechnology 12(3):217–230CrossRefGoogle Scholar
  58. Eigler DM, Lutz CP, Crommie MF, Mahoran HC, Heinrich AJ (1819) Gupta JA (2004) Information transport and computation in nanometer-scale structures. Philos Trans R Soc Lond A 362:1135–1147CrossRefGoogle Scholar
  59. Feynman RP (1985) Quantum mechanical computers. Optics News 11:11–20CrossRefGoogle Scholar
  60. Feynman RP (1992) There’s plenty of room at the bottom (reprint of 1959 lecture). J Microelectromech Syst 1(1):60–66CrossRefGoogle Scholar
  61. Feynman RP, Leighton R, Sands M (2006) Ratchet and pawl. In: The Feynman lectures on physics, vol 1. Addison Wesley, San Francisco, pp 1–9zbMATHGoogle Scholar
  62. Fountain TJ, Duff MJB, Crawley DG, Tomlinson CD, Moffat CD (1998) The use of nanoelectronic devices in highly parallel computing systems. IEEE Trans VLSI Syst 6(1):31–38CrossRefGoogle Scholar
  63. Frank MP (2005) Introduction to reversible computing: motivation, progress, and challenges. In: CF ’05: Proceedings of the 2nd conference on computing frontiers. ACM Press, New York, pp 385–390CrossRefGoogle Scholar
  64. Frazier G, Taddiken A, Seabaugh A, Randall J (1993) Nanoelectronic circuits using resonant tunneling transistors and diodes. In: Digest of technical papers. IEEE international solid-state circuits conference (ISSCC), San Francisco, 24–26 Feb 1993, pp 174–175Google Scholar
  65. Fredkin E, Toffoli T (1982) Conservative logic. Int J Theor Phys 21:219–253MathSciNetzbMATHCrossRefGoogle Scholar
  66. Fukś H (2002) Nondeterministic density classification with diffusive probabilistic cellular automata. Phys Rev E 66(6):066106CrossRefGoogle Scholar
  67. Gács P (1986) Reliable computation with cellular automata. J Comput Syst Sci 32(1):15–78MathSciNetzbMATHCrossRefGoogle Scholar
  68. Gács P (1989) Self-correcting two-dimensional arrays. In: Micali S (ed) Randomness in computation, Advances in computing research (a scientific annual), vol 5. JAI Press, Greenwich, pp 223–326Google Scholar
  69. Gács P (1997) Reliable cellular automata with self-organization. In: IEEE symposium on foundations of computer science, pp 90–99Google Scholar
  70. Gács P, Reif X (1988) A simple three-dimensional real-time reliable cellular array. J Comput Syst Sci 36(2):125–147MathSciNetzbMATHCrossRefGoogle Scholar
  71. Gao C, Hammerstrom D (2007) Cortical models onto CMOL and CMOS – architectures and performance/price. IEEE Trans Circ Syst I: Regul Pap 54(11):2502–2515MathSciNetzbMATHGoogle Scholar
  72. Gil D, de Andrés D, Ruiz JC, Gil P (2007) Identifying fault mechanisms and models of emerging nanoelectronic devices. In: Workshop on dependable and secure nanocomputing (DSN’07). Online proceedings WDSN07_files/Texts/WDSN07-POST-01-Gil.pdf. Accessed 5 Aug 2008
  73. Gimarc CE, Milutinovic VM (1987) A survey of RISC processors and computers of the mid-1980s. Computer 20(9):59–69CrossRefGoogle Scholar
  74. Goldstein SC (2005) The impact of the nanoscale on computing systems. In: IEEE/ACM international conference on computer-aided design (ICCAD 2005), San Jose, pp 655–661. Online Proceedings papers/goldstein-iccad05.pdf. Accessed 5 Aug 2008
  75. Goldstein SC, Budiu M (2001) Nanofabrics: spatial computing using molecular electronics. In: Proceedings of the 28th annual international symposium on computer architecture, pp 178–191Google Scholar
  76. Graham P, Gokhale M (2004) Nanocomputing in the presence of defects and faults: a survey. In: Nano, quantum and molecular computing. Kluwer, Boston, pp 39–72CrossRefGoogle Scholar
  77. Green JE, Choi JW, Boukai A, Bunimovich Y, Johnston-Halperin E, Delonno E, Luo Y, Sheriff BA, Xu K, Shin YS, Tseng HR, Stoddart JF, Heath JR (2007) A 160-kilobit molecular electronic memory patterned at 1011 bits per square centimeter. Nature 445(7126):414–417CrossRefGoogle Scholar
  78. Han J, Jonker P (2003) A defect- and fault-tolerant architecture for nanocomputers. Nanotechnology 14(2):224–230CrossRefGoogle Scholar
  79. Han J, Gao J, Qi Y, Jonker P, Fortes JAB (2005) Toward hardware-redundant, fault-tolerant logic for nanoelectronics. IEEE Des Test Comput 22(4):328–339CrossRefGoogle Scholar
  80. Harao M, Noguchi S (1975) Fault tolerant cellular automata. J Comput Syst Sci 11(2):171–185MathSciNetzbMATHCrossRefGoogle Scholar
  81. Hartmanis J (1995) On the weight of computations. Bull Eur Assoc Theor Comput Sci 55:136–138zbMATHGoogle Scholar
  82. Hauck S (1995) Asynchronous design methodologies: an overview. Proc IEEE 83(1):69–93CrossRefGoogle Scholar
  83. Haykin S (1998) Neural networks: a comprehensive foundation. Prentice Hall PTR, Upper Saddle RiverzbMATHGoogle Scholar
  84. Heath JR, Kuekes PJ, Snider GS, Williams RS (1998) A defect-tolerant computer architecture: Opportunities for nanotechnology. Science 280(5370):1716–1721CrossRefGoogle Scholar
  85. Heinrich AJ, Lutz CP, Gupta JA, Eigler DM (2002) Molecule cascades. Science 298(5597):1381–1387CrossRefGoogle Scholar
  86. Ho R, Mai KW, Horowitz MA (2001) The future of wires. Proc IEEE 89:490–504CrossRefGoogle Scholar
  87. Huang Y, Duan X, Wei Q, Lieber C (2001) Directed assembly of one-dimensional nanostructures into functional networks. Science 291(5504):630–633CrossRefGoogle Scholar
  88. Husband CP, Husband SM, Daniels JS, Tour JM (2003) Logic and memory with nanocell circuits. IEEE Trans Electron Dev 50(9):1865–1875CrossRefGoogle Scholar
  89. Hush NS (2003) An overview of the first half-century of molecular electronics. Ann N Y Acad Sci 1006:1–20CrossRefGoogle Scholar
  90. Isokawa T, Abo F, Peper F, Kamiura N, Matsui N (2003) Defect-tolerant computing based on an asynchronous cellular automaton. In: Proceedings of SICE annual conference, Fukui, pp 1746–1749Google Scholar
  91. Isokawa T, Abo F, Peper F, Adachi S, Lee J, Matsui N, Mashiko S (2004) Fault-tolerant nanocomputers based on asynchronous cellular automata. Int J Mod Phys C 15(6):893–915zbMATHCrossRefGoogle Scholar
  92. Isokawa T, Kowada S, Peper F, Kamiura N, Matsui N (2006) Online marking of defective cells by random flies. In: Yacoubi SE, Chopard B, Bandini S (eds) Lecture notes in computer science, vol 4173. Springer, Berlin, pp 347–356Google Scholar
  93. Isokawa T, Kowada S, Takada Y, Peper F, Kamiura N, Matsui N (2007) Defect-tolerance in cellular nanocomputers. New Gener Comput 25(2):171–199zbMATHCrossRefGoogle Scholar
  94. International Roadmap Commitee (2005a) International technology roadmap for semiconductorsGoogle Scholar
  95. International Roadmap Commitee (2005b) International technology roadmap for semiconductors, emerging research devices. Accessed 5 Aug 2008
  96. International Roadmap Commitee (2005c) International technology roadmap for semiconductors, interconnect. Accessed 5 Aug 2008
  97. Iwai H (2004) CMOS scaling for sub-90 nm to sub-10 nm. In: VLSID ‘04: Proceedings of the 17th international conference on VLSI design. IEEE Computer Society, Washington, DC, p 30CrossRefGoogle Scholar
  98. Jablonski DG (1990) A heat engine model of a reversible computation. Proc IEEE 78(5):817–825CrossRefGoogle Scholar
  99. Jung GY, Johnston-Halperin E, Wu W, Yu Z, Wang SY, Tong WM, Li Z, Green JE, Sheriff BA, Boukai A, Bunimovich Y, Heath JR, Williams RS (2006) Circuit fabrication at 17 nm half-pitch by nanoimprint lithography. Nano Lett 6(3):351–354CrossRefGoogle Scholar
  100. Kamins TI, Williams RS, Chen Y, Chang YL, Chang YA (2000) Chemical vapor deposition of Si nanowires nucleated by TiSi2 islands on Si. Appl Phys Lett 76(5):562–564CrossRefGoogle Scholar
  101. Kiehl RA (2006) Information processing in nanoscale arrays: DNA assembly, molecular devices, nano-array architectures. In: ICCAD ‘06: proceedings of the 2006 IEEE/ACM international conference on computer-aided design, San Jose, 5–9 Nov 2006Google Scholar
  102. Kish LB (2002) End of Moore’s law: thermal (noise) death of integration in micro and nano electronics. Phys Lett A 305(3–4):144–149CrossRefGoogle Scholar
  103. Kish LB (2006) Thermal noise driven computing. Appl Phys Lett 89(14):144104CrossRefGoogle Scholar
  104. Knap W, Deng Y, Rumyantsev S, Lu JQ, Shur MS, Saylor CA, Brunel LC (2002) Resonant detection of subterahertz radiation by plasma waves in a submicron field-effect transistor. Appl Phys Lett 80(18):3433–3435CrossRefGoogle Scholar
  105. Korkmaz P, Akgul BES, Palem KV, Chakrapani LN (2006) Advocating noise as an agent for ultra-low energy computing: probabilistic complementary metal-oxide-semiconductor devices and their characteristics. Jpn J Appl Phys 45(4B):3307–3316CrossRefGoogle Scholar
  106. Kreup F, Graham AP, Liebau M, Duesberg GS, Seidel R, Unger E (2004) Carbon nanotubes for interconnect applications. In: Electron devices meeting, 2004. IEDM technical digest. IEEE International, pp 683–686Google Scholar
  107. Kuekes PJ, Williams RS, Heath JR (2000) Demultiplexer for a molecular wire crossbar network. US Patent 6 128 214Google Scholar
  108. Kuekes PJ, Robinett W, Seroussi G, Williams RS (2005a) Defect-tolerant interconnect to nanoelecronic circuits: internally redundant demultiplexers based on error-correcting codes. Nanotechnology 16(6):869–881CrossRefGoogle Scholar
  109. Kuekes PJ, Robinett W, Williams RS (2005b) Improved voltage margins using linear error-correcting codes in resistor-logic demultiplexers for nanoelectronics. Nanotechnology 16(9):1419–1432CrossRefGoogle Scholar
  110. Kuekes PJ, Steward DR, Williams RS (2005c) The crossbar latch: Logic value storage, restoration, and inversion in crossbar circuits. J Appl Phys 97(3):034301CrossRefGoogle Scholar
  111. Kuekes PJ, Robinett W, Roth RM, Seroussi G, Snider GS, Williams RS (2006) Resistor-logic demultiplexers for nanoelectronics based on constant- weight codes. Nanotechnology 17(4):1052–1061CrossRefGoogle Scholar
  112. Lala PK (2001) Self-checking and fault-tolerant digital design. Morgan Kaufmann, San FranciscoGoogle Scholar
  113. Landauer R (1961) Irreversibility and heat generation in the computing process. IBM J Res Dev 5(3):183–191MathSciNetzbMATHCrossRefGoogle Scholar
  114. Landauer R (1984) Dissipation in computation. Phys Rev Lett 53(12):1205CrossRefGoogle Scholar
  115. Landauer R (1992) Information is physical. In: PhysComp ’92: workshop on physics and computation, Dallas, 2–4 Oct 1992, pp 1–4Google Scholar
  116. Le J, Pinto Y, Seeman NC, Musier-Forsyth K, Taton TA, Kiehl RA (2004) DNA-templated self-assembly of metallic nanocomponent arrays on a surface. Nano Lett 4(12):2343–2347CrossRefGoogle Scholar
  117. Lee J, Adachi S, Peper F, Morita K (2003) Embedding universal delay-insensitive circuits in asynchronous cellular spaces. Fundamenta Informaticae 58(3/4):295–320MathSciNetzbMATHGoogle Scholar
  118. Lee J, Peper F, Adachi S, Mashiko S (2004) On reversible computation in asynchronous systems. In: Quantum information and complexity. World Scientific, Singapore, pp 296–320CrossRefGoogle Scholar
  119. Lee J, Adachi S, Peper F, Mashiko S (2005) Delay-insensitive computation in asynchronous cellular automata. J Comput Syst Sci 70:201–220MathSciNetzbMATHCrossRefGoogle Scholar
  120. Lee J, Peper F, Adachi S (2006) Reversible logic elements operating in asynchronous mode. US Patent 6 987 402Google Scholar
  121. Lent CS, Tougaw PD, Porod W, Bernstein GH (1993) Quantum cellular automata. Nanotechnology 4(1):49–57CrossRefGoogle Scholar
  122. Li C, Fan W, Lei B, Zhang D, Han S, Tang T, Liu X, Liu Z, Asano S, Meyyappan M, Han J, Zhou C (2004) Multilevel memory based on molecular devices. Appl Phys Lett 84(11):1949–1951CrossRefGoogle Scholar
  123. Liebmann LW (2003) Layout impact of resolution enhancement techniques: impediment or opportunity? In: Proceedings of 2003 international symposium on physical design (ISPD’03). ACM Press, New York, pp 110–117CrossRefGoogle Scholar
  124. Likharev KK, Semenov VK (1991) RSFQ logic/memory family: a new Josephson-junction technology for sub-terahertz-clock-frequency digital systems. IEEE Trans Appl Supercond 1(1):3–28CrossRefGoogle Scholar
  125. Likharev KK, Strukov DB (2005) Introduction to Molecular Electronics. In: Cuniberti G et al (eds) CMOL: devices, circuits, and architectures. Springer, Berlin, pp 447–477Google Scholar
  126. Lloyd S (1993) A potentially realizable quantum computer. Science 261(5128):1569–1571CrossRefGoogle Scholar
  127. Lloyd S (2000) Ultimate physical limits to computation. Nature 406(6799):1047–1054CrossRefGoogle Scholar
  128. Madou MJ (2002) Lithography. In: Fundamentals of microfabrication. The science of miniaturization. CRC Press, Florida, pp 1–76Google Scholar
  129. Maezawa K, Förster A (2003) Quantum transport devices based on resonant tunneling. In: Nanoelectronics and information technology. Wiley-VCH, Weinheim, pp 407–424Google Scholar
  130. Manohar R, Martin AJ (1995) Quasi-delay-insensitive circuits are Turing-complete. Tech. Rep. CaltechCSTR:1995.cs-tr-95–11, California Institute of Technology, PasadenaGoogle Scholar
  131. Margolus NH (1984) Physics-like models of computation. Physica D 10(1/2):81–95MathSciNetzbMATHCrossRefGoogle Scholar
  132. Margolus NH (1999) Crystalline computation. In: Feynman and computation: exploring the limits of computers. Perseus books, Cambridge, pp 267–305Google Scholar
  133. Martin AJ (1990) Programming in VLSI: from communicating processes to delay-insensitive circuits. In: Hoare CAR (ed) Developments in concurrency and communication. Addison-Wesley, Reading, pp 1–64Google Scholar
  134. Mayor M, Weber HB, Waser R (2003) Molecular electronics. In: Nanoelectronics and information technology. Wiley, Berlin, pp 501–525Google Scholar
  135. Mead C (1990) Neuromorphic electronic systems. Proc IEEE 78(10):1629–1636CrossRefGoogle Scholar
  136. Mead C, Conway L (1980) Introduction to VLSI systems. Addison-Wesley, BostonGoogle Scholar
  137. Meindl JD (1995) Low power microelectronics: retrospect and prospect. Proc IEEE 83(4):619–635CrossRefGoogle Scholar
  138. Meindl JD, Chen Q, Davis JA (2001) Limits on silicon nanoelectronics for terascale integration. Science 293(5537):2044–2049CrossRefGoogle Scholar
  139. Miller DAB (2000) Rationale and challenges for optical interconnects to electronic chips. Proc IEEE 88(6):728–749CrossRefGoogle Scholar
  140. Mishra M, Goldstein SC (2003) Defect tolerance at the end of the roadmap. In: Proceedings of the IEEE international test conference (ITC), vol 1, pp 1201–1210Google Scholar
  141. Mizuno M, Anjo K, Surni Y, Wakabayashi H, Mogami T, Horiuchi T, Yamashina M (2000) On-chip multi-ghz clocking with transmission lines. In: 2000 I.E. international solid-state circuits conference (ISSCC). Digest of technical papers, pp 366–367Google Scholar
  142. Montemerlo MS, Love JC, Opiteck GJ, Goldhaber-Gordon DJ, Ellenbogen JC (1996) Technologies and designs for electronic nanocomputers. Technical report 96W0000044, MITREGoogle Scholar
  143. Moore GE (2003) No exponential is forever: but “forever” can be delayed! In: Solid-state circuits conference. Digest of technical papers. ISSCC. IEEE international solid-state circuits conference (ISSCC), vol 1, pp 20–23Google Scholar
  144. Morales A, Lieber C (2001) A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science 291(5348):208–211CrossRefGoogle Scholar
  145. Morita K (2003) A simple universal logic element and cellular automata for reversible computing. Lect Notes Comput Sci 2055:102–113MathSciNetzbMATHCrossRefGoogle Scholar
  146. Motwani R, Raghavan P (1995) Randomized algorithms. Cambridge University Press, New YorkzbMATHCrossRefGoogle Scholar
  147. Muller DE, Bartky WS (1959) A theory of asynchronous circuits. In: Proceedings of an international symposium on the theory of switching. Harvard University Press, Cambridge, MA, pp 204–243Google Scholar
  148. Nikolic K, Forshaw M (2003) The current status of nanoelectronic devices. Int J Nanosci 2(1/2):7–29CrossRefGoogle Scholar
  149. Nikolic K, Sadek A, Forshaw M (2002) Fault-tolerant techniques for nanocomputers. Nanotechnology 13(3):357–362CrossRefGoogle Scholar
  150. Nishio H, Kobuchi Y (1975) Fault tolerant cellular spaces. J Comput Syst Sci 11(2):150–170MathSciNetzbMATHCrossRefGoogle Scholar
  151. O KK, Kim K, Floyd B, Mehta J, Yoon H, Hung CM, Bravo D, Dickson T, Guo X, Li R, Trichy N, Caserta J, Bomstad W, Branch J, Yang DJ, Bohorquez J, Gao L, Sugavanam A, Lin JJ, Chen J, Martin F, Brewer J (2003) Wireless communications using integrated antennas. In: Proceedings of 2003 I.E. international interconnect technology conference, San Francisco, 2–4 June 2003, pp 111–113Google Scholar
  152. O’Mahony F, Yue CP, Horowitz MA, Wong SS (2003a) A 10-GHz global clock distribution using coupled standing-wave oscillators. IEEE J Solid-State Circ 38(11):1813–1820CrossRefGoogle Scholar
  153. O’Mahony F, Yue CP, Horowitz M, Wong SS (2003b) 10 GHz clock distribution using coupled standing-wave oscillators. In: Solid-state circuits conference. Digest of technical papers. IEEE international solid-state circuits conference (ISSCC), vol 1, pp 428–504Google Scholar
  154. Ono Y, Fujiwara A, Nishiguchi K, Inokawa H, Takahashi Y (2005) Manipulation and detection of single electrons for future information processing. J Appl Phys 97:031101CrossRefGoogle Scholar
  155. Palem KV (2005) Energy aware computing through probabilistic switching: a study of limits. IEEE Trans Comput 54(9):1123–1137CrossRefGoogle Scholar
  156. Parviz BA, Ryan D, Whitesides GM (2003) Using self-assembly for the fabrication of nano-scale electronic and photonic devices. IEEE Trans Adv Packag 26(3):233–241CrossRefGoogle Scholar
  157. Peper F, Lee J, Adachi S, Mashiko S (2003) Laying out circuits on asynchronous cellular arrays: a step towards feasible nanocomputers? Nanotechnology 14(4):469–485CrossRefGoogle Scholar
  158. Peper F, Lee J, Abo F, Isokawa T, Adachi S, Matsui N, Mashiko S (2004) Fault-tolerance in nanocomputers: a cellular array approach. IEEE Trans Nanotechnol 3(1):187–201zbMATHCrossRefGoogle Scholar
  159. Petty M (2007) Molecular electronics, from principles to practice. Wiley, West SussexGoogle Scholar
  160. Pinto YY, Le JD, Seeman NC, Musier-Forsyth K, Taton TA, Kiehl RA (2005) Sequence-encoded self-assembly of multiple-nanocomponent arrays by 2D DNA scaffolding. Nano Lett 5(12):2399–2402CrossRefGoogle Scholar
  161. Pippenger N (1985) On networks of noisy gates. In: 26th annual symposium on foundations of computer science, 21–23 October 1985, Portland. IEEE, Washington, DC, pp 30–38Google Scholar
  162. Pippenger N (1989) Invariance of complexity measures for networks with unreliable gates. J ACM 36(3):531–539MathSciNetzbMATHCrossRefGoogle Scholar
  163. Pippenger N (1990) Developments in: “The synthesis of reliable organisms from unreliable components”. In: Proceedings of symposia in pure mathematics, vol 50, pp 311–324Google Scholar
  164. Porod W (1998) Quantum-dot cellular automata devices and architectures. Int J High-Speed Electron Syst 9(1):37–63CrossRefGoogle Scholar
  165. Porod W, Grondin RO, Ferry DK (1984) Dissipation in computation. Phys Rev Lett 52(3):232–235CrossRefGoogle Scholar
  166. Rahman A, Reif R (2000) System-level performance evaluation of three-dimensional integrated circuits. IEEE Trans Very Large Scale Integr Syst 8(6):671–678CrossRefGoogle Scholar
  167. Robert RW, Keyes W (1985) What makes a good computer device? Science 230(4722):138–144CrossRefGoogle Scholar
  168. Robinson AL (1984) Computing without dissipating energy. Science 223(4641):1164–1166CrossRefGoogle Scholar
  169. Rothemund PW, Papadakis N, Winfree E (2004) Algorithmic self-assembly of DNA Sierpinski triangles. PLoS Biol 2(12):2041–2053CrossRefGoogle Scholar
  170. Roychowdhury VP, Janes DB, Bandyopadhyay S, Wang X (1996) Collective computational activity in self-assembled arrays of quantum dots: a novel neuromorphic architecture for nanoelectronics. IEEE Trans Electron Dev 43(10):1688–1699CrossRefGoogle Scholar
  171. Rueckes T, Kim K, Joselevich E, Tseng G, Cheung C, Lieber C (2000) Carbon nanotube based nonvolatile random access memory for molecular computing. Science 289(5476):94–97CrossRefGoogle Scholar
  172. Sadek AS, Nikolic K, Forshaw M (2004) Parallel information and computation with restitution for noise-tolerant nanoscale logic networks. Nanotechnology 15(1):192–210CrossRefGoogle Scholar
  173. Sathe V, Chueh JY, Kim J, Ziesler CH, Kim S, Papaefthymiou M (2005) Fast, efficient, recovering, and irreversible. In: CF ‘05: Proceedings of the 2nd conference on computing frontiers. ACM, New York, pp 407–413CrossRefGoogle Scholar
  174. Seitz CL (1980) System timing. In: Mead CA, Conway LA (eds) Introduction to VLSI Systems. Addison-Wesley, BostonGoogle Scholar
  175. Sherman WB, Seeman NC (2004) A precisely controlled DNA biped walking device. Nano Lett 4(7):1203–1207CrossRefGoogle Scholar
  176. Shor PW (2004) Progress in quantum algorithms. Quantum Inf Process 3(1–5):5–13MathSciNetzbMATHCrossRefGoogle Scholar
  177. Smith PA, Nordquist CD, Jackson TN, Mayer TS, Martin BR, Mbindyo J, Mallouk TE (2000) Electric-field assisted assembly and alignment of metallic nanowires. Appl Phys Lett 77(9):1399–1401CrossRefGoogle Scholar
  178. van de Snepscheut JLA (1985) Trace theory and VLSI design. In: Lecture notes in computer science, vol 200. Springer, BerlinGoogle Scholar
  179. Snider GS, Kuekes PJ (2003) Molecular-junction-nanowire-crossbar-based associative array. US Patent 6 898 098Google Scholar
  180. Snider GS, Robinett W (2005) Crossbar demultiplexers for nanoelectronics based on n-hot codes. IEEE Trans Nanotechnol 4(2):249–254CrossRefGoogle Scholar
  181. Snider GS, Williams RS (2007) Nano/CMOS architectures using a field-programmable nanowire interconnect. Nanotechnology 18(3):1–11CrossRefGoogle Scholar
  182. Snider GS, Kuekes PJ, Williams RS (2004) CMOS-like logic in defective, nanoscale crossbars. Nanotechnology 15(8):881–891CrossRefGoogle Scholar
  183. Snider GS, Kuekes PJ, Hogg T, Williams RS (2005) Nanoelectronic architectures. Appl Phys A 80(6):1183–1195CrossRefGoogle Scholar
  184. Soh C, Quate C, Morpurgo C, Marcus C, Kong C, Dai C (1999) Integrated nanotube circuits: controlled growth and ohmic contacting of single-walled carbon nanotubes. Appl Phys Lett 75(5):627–629CrossRefGoogle Scholar
  185. Sotiriadis PP (2006) Information capacity of nanowire crossbar switching networks. IEEE Trans Inf Theory 52(7):3019–3032MathSciNetzbMATHCrossRefGoogle Scholar
  186. Spagocci S, Fountain T (1999) Fault rates in nanochip devices. Proc Electrochem Soc 98–19:582–596Google Scholar
  187. Spielman DA (1996) Highly fault-tolerant parallel computation. In: Proceedings of the 37th IEEE symposium on foundations of computer science (FOCS), Burlington, 14–16 Oct 1996, pp 154–163Google Scholar
  188. Srivastava N, Banerjee K (2004) Interconnect challenges for nanoscale electronic circuits. TMS J Mater (JOM) 56(10):30–31Google Scholar
  189. Stan MR, Franzon PD, Goldstein SC, Lach JC, Ziegler MM (2003) Molecular electronics: from devices and interconnect to circuits and architecture. Proc IEEE 91(11):1940–1957CrossRefGoogle Scholar
  190. Strukov DB, Likharev KK (2005) CMOL FPGA: a reconfigurable architecture for hybrid digital circuits with two-terminal nanodevices. Nanotechnology 16(6):888–900CrossRefGoogle Scholar
  191. Taubin A, Cortadella J, Lavagno L, Kondratyev A, Peeters A (2007) Design automation of real life asynchronous devices and systems. Found Trends Electron Des Autom 2(1):1–133zbMATHGoogle Scholar
  192. Theis TN (2000) The future of interconnection technology. IBM J Res Dev 44(3):379–390CrossRefGoogle Scholar
  193. Toffoli T (1984) Comment on: dissipation in computation. Phys Rev Lett 53(12):1204CrossRefGoogle Scholar
  194. Tougaw PD, Lent CS (1994) Logical devices implemented using quantum cellular-automata. J Appl Phys 75:1818–1825CrossRefGoogle Scholar
  195. Tour JM, Van Zandt L, Husband CP, Husband SM, Wilson LS, Franzon PD, Nackashi DP (2002) Nanocell logic gates for molecular computing. IEEE Trans Nanotechnol 1(2):100–109CrossRefGoogle Scholar
  196. Tour JM, Cheng L, Nackashi DP, Yao Y, Flatt AK, St Angelo SK, Mallouk TE, Franzon PD (2003) Nanocell electronic memories. J Am Chem Soc 125(43):13279–13283CrossRefGoogle Scholar
  197. Türel Ö, Lee JH, Ma X, Likharev K (2005) Architectures for nanoelectronic implementation of artificial neural networks: new results. Neurocomputing 64:271–283CrossRefGoogle Scholar
  198. Uchida K (2003) Single-electron devices for logic applications. In: Nanoelectronics and information technology. Wiley, Berlin, pp 425–443Google Scholar
  199. Unger SH (1969) Asynchronous sequential switching circuits. Wiley, New YorkGoogle Scholar
  200. von Hippel AR (1956) Molecular engineering. Science 123(3191):315–317CrossRefGoogle Scholar
  201. von Neumann J (1956) Probabilistic logics and the synthesis of reliable organisms from unreliable components. In: Automata studies. Princeton University Press, Princeton, pp 43–98Google Scholar
  202. Waingold E, Taylor M, Srikrishna D, Sarkar V, Lee W, Lee V, Kim J, Frank M, Finch P, Barua R, Babb J, Amarasinghe S, Agarwal A (1997) Baring it all to software: Raw machines. Computer 30(9):86–93CrossRefGoogle Scholar
  203. Wang KL, Khitun A, Flood AH (2005) Interconnects for nanoelectronics. In: Proceedings of 2005 I.E. international interconnect technology conference, San Francisco, 6–8 June 2005, pp 231–233Google Scholar
  204. Wang W (1990) An asynchronous two-dimensional self-correcting cellular automaton. Ph D thesis, Boston University, Boston, MA 02215, short version: In: Proceedings of 32nd IEEE symposium on the foundations of computer science, San Juan, 1–4 Oct 1990. IEEE Press, pp 188–192, 1991Google Scholar
  205. Weeber JC, González MU, Baudrion AL, Dereux A (2005) Surface plasmon routing along right angle bent metal strips. Appl Phys Lett 87(22):221101CrossRefGoogle Scholar
  206. Whitesides GM, Grzybowsky B (2002) Self-assembly at all scales. Science 295(5564):2418–2421CrossRefGoogle Scholar
  207. Mac Williams FJ, Sloane NJA (1978) The theory of error-correcting codes. North-Holland, AmsterdamGoogle Scholar
  208. Williams RS, Kuekes PJ (2001) Demultiplexer for a molecular wire crossbar network. US Patent 6 256 767Google Scholar
  209. Winfree E, Liu F, Wenzler LA, Seeman NC (1998) Design and self-assembly of two-dimensional DNA crystals. Nature 394(6693):539–544CrossRefGoogle Scholar
  210. Wolf SA, Awschalom DD, Buhrman RA, Daughton JM, von Molnar S, Roukes ML, Chtchelkanova AY, Treger DM (2001) Spintronics: a spin-based electronics vision for the future. Science 294(5546):1488–1495CrossRefGoogle Scholar
  211. Wong HSP, Frank DJ, Solomon PM, Wann CHJ, Wesler JJ (1999) Nanoscale CMOS. Proc IEEE 87(4):537–570CrossRefGoogle Scholar
  212. Wood J, Edwards TC, Lipa S (Nov 2001) Rotary traveling-wave oscillator arrays: a new clock technology. IEEE J Solid-State Circ 36(11):1654–1665CrossRefGoogle Scholar
  213. Worschech L, Beuscher F, Forchel A (1999) Quantized conductance in up to 20 μm long shallow etched GaAs/AlGaAs quantum wires. Appl Phys Lett 75(4):578–580CrossRefGoogle Scholar
  214. Wu W, Jung GY, Olynick DL, Straznicky J, Li Z, Li X, Ohlberg DAA, Chen Y, Wang SY, Liddle JA, Tong WM, Williams RS (2005) One-kilobit cross-bar molecular memory circuits at 30-nm half-pitch fabricated by nanoimprint lithography. Appl Phys A 80(6):1173–1178CrossRefGoogle Scholar
  215. Yamada T, Akazawa M, Asai T, Amemiya Y (2001) Boltzmann machine neural network devices using single-electron tunneling. Nanotechnology 12(1):60–67CrossRefGoogle Scholar
  216. Yanagida T, Ueda M, Murata T, Esaki S, Ishii Y (2007) Brownian motion, fluctuation and life. Biosystems 88(3):228–242CrossRefGoogle Scholar
  217. Yang T, Kiehl R, Chua L (2001) Tunneling phase logic cellular nonlinear networks. Int J Bifurc Chaos 11(12):2895–2911CrossRefGoogle Scholar
  218. Zhirnov VV, Cavin RK, Hutchby JA, Bourianoff GI (2003) Limits to binary logic switch scaling – a gedanken model. Proc IEEE 91(11):1934–1939CrossRefGoogle Scholar
  219. Zhong Z, Wang D, Cui Y, Bockrath MW, Lieber CM (2003) Nanowire crossbar arrays as address decoders for integrated nanosystems. Science 302(5649):1377–1379CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.National Institute of Information and Communications TechnologyKobeJapan

Personalised recommendations