Nuclear Energy pp 187-204 | Cite as

Nuclear Fuel Reprocessing

  • Michael F. Simpson
  • Jack D. Law
Reference work entry
Part of the Encyclopedia of Sustainability Science and Technology Series book series (ESSTS)



All elements including and beyond actinium (Z > 89) in the periodic table. In spent fuel, the major actinides of interest are uranium, plutonium, neptunium, americium, and curium.

Cathode processor

A high-temperature vacuum distillation furnace used to separate salt from metallic actinides deposited on an electrorefiner cathode.

Centrifugal contactors

Liquid-liquid extraction equipment used for aqueous solvent extraction that consists of a spinning rotor to intensely mix the different phases.

Ceramic waste

The glass-bonded sodalite matrix used to encapsulate waste salt from electrorefiner operation.


French process for coextracting uranium and plutonium using extraction methods similar to PUREX.


An electrochemical system used to separate actinides from spent fuel using a molten salt electrolyte.

Experimental Breeder Reactor-II

A sodium-cooled, fast test reactor operational at Argonne National Laboratory-West from 1963 to 1994.

Geologic repository



  1. 1.
    Cochran RG, Tsoulfanidis N (1993) The nuclear fuel cycle: analysis and management, 2nd edn. American Nuclear Society, Washington D.C., p 214Google Scholar
  2. 2.
    OECD, IAEA (2008) Uranium 2007: resources, production, and demand. Nuclear Energy Agency, ParisGoogle Scholar
  3. 3.
    Gray LW (1999) From separations to reconstitution – a short history of plutonium in the US and Russia. Lawrence Livermore National Laboratory, UCRL-JC-133802Google Scholar
  4. 4.
    Evans TF, Tomlinson RE (1954) Hot semiworks REDOX studies. Hanford Atomics Products Operations, HW-31767Google Scholar
  5. 5.
    REDOX technical manual (1951) Hanford Works, HW-18700Google Scholar
  6. 6.
    Hore-Lacy I (2009) Mixed oxide fuel (MOX) (World Nuclear Association (Content Partner); Cutler J. Cleveland (Topic Editor)). In: Cleveland CJ (ed) Encyclopedia of earth. Environmental Information Coalition, National Council for Science and the Environment, Washington, DCGoogle Scholar
  7. 7.
    Denniss IS, Jeapes AP (2001) Reprocessing irradiated fuel. In: Wilson PD (ed) The nuclear fuel cycle: from ore to wastes. Oxford University Press, Oxford, UK, p 120Google Scholar
  8. 8.
    Poczynajlo A (1988) Studies on reductive back extraction of plutonium in PUREX process. J Radioanal Nucl Chem 125(2):445–465CrossRefGoogle Scholar
  9. 9.
    Long JT (1967) Engineering for nuclear fuel reprocessing. Gordon and Breach Science Publishers, New YorkGoogle Scholar
  10. 10.
    Petitjean V, Fillet C, Boen R, Veyer C, Flament T (2002) Development of vitrification process and glass formulation for nuclear waste conditioning. In: Proceedings of waste management 2002, TucsonGoogle Scholar
  11. 11.
    Spent fuel reprocessing options (2008) International Atomic Energy Administrations, IAEA-TECDOC-1587, ViennaGoogle Scholar
  12. 12.
    Boullis B (2008) Future nuclear fuel cycles: prospects and challenges. In: Moyer B (ed) Solvent extraction: fundamentals to industrial applications. Proceedings of ISEC 2008 international solvent extraction conference, Tucson, AZ , vol 1. pp 29–42Google Scholar
  13. 13.
    Nash K (2008) Key features of the TALSPEAK and similar trivalent actinide-lanthanide partitioning processes. In: Moyer B (ed) Solvent extraction: fundamentals to industrial applications. Proceedings of ISEC 2008 international solvent extraction conference, Tucson, AZ, vol 1. pp 511–519Google Scholar
  14. 14.
    Laidler J (2008) An overview of spent-fuel processing in the Global Nuclear Energy Partnership. In: Moyer B (ed) Solvent extraction: fundamentals to industrial applications. Proceedings of ISEC 2008 international solvent extraction conference, Tucson, AZ, vol 1. pp 695–701Google Scholar
  15. 15.
    Riddle C, Baker J, Law J, McGrath C, Meikrantz D, Mincher B, Peterman D, Todd T (2005) Development of a novel solvent for the simultaneous separation of strontium and cesium from acidic solutions. Solvent Extr Ion Exch 23(3):449–461CrossRefGoogle Scholar
  16. 16.
    Christiansen B, Apostolidis C, Carlos R, Courson O, Glatz JP, Malmbeck R, Pagliosa G, Römer K, Serrano-Purroy D (2004) Advanced aqueous reprocessing in P&T strategies: process demonstrations on genuine fuels and targets. Radiochim Acta 92:475–480Google Scholar
  17. 17.
    Miguirditchian M, Chareyre L, Hérès X, Hill C, Baron P, Masson M (2007) GANEX: adaptation of the DIAMEX-SANEX process for the group actinide separation. In: Proceedings of GLOBAL 2007 advanced nuclear fuel cycles and systems, BoiseGoogle Scholar
  18. 18.
    Wigeland R, Bauer T, Fanning T, Morris E (2006) Separations and transmutation criteria to improve utilization of a geologic repository. Nucl Technol 154(1):95–106CrossRefGoogle Scholar
  19. 19.
    Drain F, Emin JL, Vinoche R, Baron P (2008) COEX process: cross-breeding between innovation and industrial experience. In: Proceedings from waste management 2008, TucsonGoogle Scholar
  20. 20.
    Katsuta, Tadahiro, and Tatsujiro Suzuki (2011). Japan’s spent fuel and plutonium management challenge. Energy Policy 39(11):6827–6841CrossRefGoogle Scholar
  21. 21.
    Pereira C, Vandegrift G, Regalbuto M, Bakel A, Bowers D, Gelis A, Hebden A, Maggos L (2007) Lab-scale demonstration of the UREX + 1a process using spent fuel. In: Proceedings from waste management 2007, TucsonGoogle Scholar
  22. 22.
    Nuñez L, Vandegrift G (2000) Evaluation of hydroxamic acid in uranium extraction process: literature review. Argonne National Laboratory, ANL00/35Google Scholar
  23. 23.
    Colven TJ Jr (1956) Mixer-settler development-operating characteristics of a large-scale mixer-seller. Savannah River Laboratory, DP-140Google Scholar
  24. 24.
    Davidson JK, Shafer AC, Haas WO (1957) Application of mixer-settlers to the PUREX process. In: The symposium on the reprocessing of irradiated fuels, book 1. United States Atomic Energy Commission, TID-7534Google Scholar
  25. 25.
    Benedict M, Pigford TH, Levi HW (1981) Nuclear chemical engineering. McGraw-Hill, New York, p 210Google Scholar
  26. 26.
    Milot JF, Duhamet J, Gourdon C, Casamatta G (1990) Simulation of a pneumatically pulsed liquid-liquid extraction column. Chem Eng J 45:111–122CrossRefGoogle Scholar
  27. 27.
    Sege G, Woodfield FW (1954) Chem Eng Prog 50(8)Google Scholar
  28. 28.
    Geier RG (1954) Application of the pulse column to the PUREX process. USACC, Report TID-7534Google Scholar
  29. 29.
    Richardson GL, Platt AM (1961) Progress in nuclear energy, series IV, technology engineering and safety, vol 4. Pergamon Press, New YorkGoogle Scholar
  30. 30.
    Leonard RA (1988) Recent advances in centrifual contactor design. Separation Sci Technol, 23(12&13):1473–1487CrossRefGoogle Scholar
  31. 31.
    Jubin RT et al (1988) Developments in centrifugal contactor technology. Oak Ridge National Laboratory, ORNL/TM-10768Google Scholar
  32. 32.
    Meikrantz DH et al (2001) Annular centrifugal contactors for multiple stage extraction processes. Chem Eng Commun 188Google Scholar
  33. 33.
    Watts C (1977) Solvent extraction equipment evaluation study – part 2. Battelle Northwest Laboratory, BNWL-2186 Pt. 2Google Scholar
  34. 34.
    Bernstein GL et al (1973) A high-capacity annular centrifugal contactor. Nucl Technol 20Google Scholar
  35. 35.
    Drain F et al (2003) Forty years of experience with liquid-liquid extraction equipment in the nuclear industry. In: Proceedings from waste management conference 2003, TucsonGoogle Scholar
  36. 36.
    Meikrantz DH et al (1996) Rotor sleeve for a centrifugal separator. US Patent # 5,571,070Google Scholar
  37. 37.
    Macaluso LL, Meikrantz DH (1999) Self-cleaning rotor for a centrifugal separator. US Patent # 5,908,376Google Scholar
  38. 38.
    Garn TG, Meikrantz DH, Law JD (2008) Remote evaluation of a three-stage 5 cm annular centrifugal contactor remote module at the INL. Idaho National Laboratory, INL/EXT-08-13670Google Scholar
  39. 39.
    Meikrantz DH, Garn TG, Law JD, Macaluso LL (2009) Evaluation of a new remote handling design for high throughput annular centrifugal contactors. Idaho National Laboratory INL/EXT-09-16824Google Scholar
  40. 40.
    Chang YI (1989) The integral fast reactor. Nucl Technol 188(2):129–138CrossRefGoogle Scholar
  41. 41.
    Till CE, Chang YI, Hannum WH (1997) The integral fast reactor – an overview. Prog Nucl Energy 31(1–2):3CrossRefGoogle Scholar
  42. 42.
    Benedict RW (1997) EBR-II spent fuel treatment demonstration project. Trans Am Nucl Soc 77:75–76Google Scholar
  43. 43.
    Ackerman JP (1991) Chemical basis for pyrochemical reprocessing of nuclear fuel. Ind Eng Chem Res 30(1):141–145CrossRefGoogle Scholar
  44. 44.
    Willit JL, Miller WE, Battles JE (1992) Electrorefining of uranium and plutonium – a literature review. J Nucl Mater 195(3):229–249CrossRefGoogle Scholar
  45. 45.
    Goff KM, Benedict RW (2005) Electrorefining experience for pyrochemical reprocessing of spent EBR-II fuel. In: Proceedings of global 2005, TsukubaGoogle Scholar
  46. 46.
    Li SX, Herrmann SD, Benedict RW, Goff KM, Simpson MF (2009) Actinide recovery experiments with bench-scale liquid cadmium cathode in real fission product-laden molten salt. Nucl Technol 165:190–199CrossRefGoogle Scholar
  47. 47.
    Vaden D, Li SX, Westphal BR, Davies KB, Johnson TA, Pace DM (2008) Engineering-scale liquid cadmium cathode experiments. Nucl Technol 162(2):124–128CrossRefGoogle Scholar
  48. 48.
    Karell EJ, Gourishankar KV, Smith JL, Chow LS, Redey L (2001) Separation of actinides from LWR fuel using molten-salt-based electrochemical processes. Nucl Technol 136:342–353CrossRefGoogle Scholar
  49. 49.
    Gourishankar K, Redey L, Williamson M (2002) Electrochemical reduction of metal oxides in molten salts. In: Light metals 2002. TMS, Warrendale, PAGoogle Scholar
  50. 50.
    Westphal BR, Marsden KC, Price JC, Laug DV (2008) On the development of a distillation process for the electrometallurgical treatment of irradiated spent nuclear fuel. Nucl Eng Technol 40(3):163–174CrossRefGoogle Scholar
  51. 51.
    Westphal BR, Keiser DD, Rigg RH, Laug DV (1994) Production of metal waste forms from spent fuel treatment. In: Proceedings of the DOE spent nuclear fuel meeting: challenges and initiatives, Salt Lake City, 13–16 Dec 1994Google Scholar
  52. 52.
    Abraham DP, McDeavitt SM, Park J (1996) Metal waste forms from the electrometallurgical treatment of spent nuclear fuel. In: Proceedings of the embedded topical meeting on DOE spent nuclear fuel and fissile material management, Reno, 16–20 June 1996Google Scholar
  53. 53.
    Pereira C, Hash MC, Lewis MA, Richmann MK, Basco J (1999) Incorporation of radionuclides from the electrometallurgical treatment of spent fuel into a ceramic waste form. Mater Res Soc Symp Proc 556:115CrossRefGoogle Scholar
  54. 54.
    Ahluwalia RK, Geyer HK, Pereira C, Ackerman JP (1998) Modeling of a zeolite column for the removal of fission products from molten salt. Ind Eng Chem Res 37:145CrossRefGoogle Scholar
  55. 55.
    Lexa D, Johnson I (2001) Occlusion and ion exchange in the molten (lithium chloride-potassium chloride-alkali chloride) salt + zeolite 4A system with alkali metal chlorides of sodium, rubidium, and cesium. Metall Mater Trans 32B:429CrossRefGoogle Scholar
  56. 56.
    Phongikaroon S, Simpson MF (2006) Two site equilibrium model for ion exchange between multivalent cations and zeolite-A in a molten salt. AIChE J 52(5):1736–1743CrossRefGoogle Scholar
  57. 57.
    Kim EH, Park GI, Cho YZ, Yang HC (2008) A new approach to minimize pyroprocessing waste salts through a series of fission product removal process. Nucl Technol 162(2):208–218CrossRefGoogle Scholar
  58. 58.
    Simpson MF, Sachdev P (2008) Development of electrorefiner waste salt disposal process for the EBR-II spent fuel treatment project. Nucl Eng Technol 40(3):175CrossRefGoogle Scholar
  59. 59.
    Simpson MF, Goff KM, Johnson SG, Bateman KJ, Battisti TJ, Toews KL, Frank SM, Moschetti TL, O’Holleran TP (2001) A description of the ceramic waste form production process from the demonstration phase of the electrometallurgical treatment of EBR-II spent fuel. Nucl Technol 134:263–277CrossRefGoogle Scholar
  60. 60.
    Thomas JL, Mange M, Eyraud C (1971) In: Gould RF (ed) Molecular sieve zeolites-I. American Chemical Society, Washington, D.CCrossRefGoogle Scholar
  61. 61.
    Ebert WE (2005) Testing to evaluate the suitability of waste forms developed for electrometallurgically treated spent sodium-bonded nuclear fuel for disposal in the Yucca Mountain repository. Argonne National Laboratory, ANL-05/43, Sept 2005Google Scholar
  62. 62.
    Hamilton LH, Scowcroft B, Ayers MH, Bailey VA, Carnesale A, Domenici PV, Eisenhower S, Hagel C, Lash J, Macfarlane AM, Meserve RA (2012) Blue Ribbon Commission on America’s Nuclear Future: report to the Secretary of Energy. Blue Ribbon Commission on America’s Nuclear Future (BRC), Washington, DCGoogle Scholar

Copyright information

© This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2018

Authors and Affiliations

  1. 1.Department of Metallurgical EngineeringUniversity of UtahIdaho FallsUSA
  2. 2.Fuel Cycle Science and Technology DivisionIdaho National LaboratoryIdaho FallsUSA

Personalised recommendations