Nuclear Energy pp 411-427 | Cite as

Nuclear Safeguards and Proliferation of Nuclear Weapons Materials

  • Michael C. Baker
Reference work entry
Part of the Encyclopedia of Sustainability Science and Technology Series book series (ESSTS)



Calorimetry is a nondestructive assay technique for determining the thermal power output of heat-producing nuclear materials. Calorimeter systems are used to determine the power output (Watts) of various radionuclides over a broad range of power levels and sample types (Pu, highly enriched uranium, and Tritium).

Destructive assay

Destructive Assay (DA) aims at the measurement of the nuclear material content, the isotopic composition, or other chemical properties of a sample. The analysis introduces a significant change to the physical form of the test sample.

Detection time

The maximum time that may elapse between diversion of a given amount of nuclear material and detection of that diversion by a safeguards authority.

Direct-use material

Nuclear material that can be used for the manufacture of nuclear explosive devices without transmutation or further enrichment. It includes plutonium containing less than 80% 238Pu, highly-enriched uranium, and 233U.




Primary Literature

  1. 1.
    Fischer D (1997) History of the International Atomic Energy Agency: the first 40 Years. IAEA, viennaGoogle Scholar
  2. 2.
    Kennedy RF (1968) Thirteen days: a memoir of the Cuban Missile Crisis. McCall, New YorkGoogle Scholar
  3. 3.
    Jaech J (1973) Statistical methods in nuclear materials control. U.S. Atomic Energy Commission, Oak RidgeCrossRefGoogle Scholar
  4. 4.
    Burr T, Coulter C, Hakkila E, Ai H, Kadokura I, Fujimaki K (1995) Statistical methods for detecting loss of materials using near-real time accounting data. 36th annual meeting of the Institute of Nuclear Materials Management, Palm DessertGoogle Scholar
  5. 5.
    Picard R (1987) Sequential analysis of materials balances. J Nucl Mater Manag 15(2):38–42Google Scholar
  6. 6.
    Zrdecki A, Armstrong J, Longmire V, Strittmatter R (1997) Inventory difference analysis at Los Alamos Plutonium Facility. 38th annual meeting of the Institute of Nuclear Materials Management, PhoenixGoogle Scholar
  7. 7.
    IAEA (2003) Safeguards techniques and equipment – 2003 Edition. IAEA/NVS/1 (revised), International Nuclear Verification Series No. 1Google Scholar
  8. 8.
    Aigner H, Binner R, Kuhn E, Blohm-Hieber U, Mayer K, Guardini S, Pietri C, Rappinger B, Mitterrand B, Reed J, Mafra-Guidicini O, Deron S (2002) International target values 2000 for Measurement uncertainties in safeguarding nuclear materials. ESARDA Bulletin, No. 31Google Scholar
  9. 9.
    Russo P, Vo D (2005) Gamma-ray detectors for nondestructive analysis. Los Alamos National Laboratory, LA-UR-05-3813Google Scholar
  10. 10.
    Martin R, Jones D, Speir L, Walker A (1974) Field assay of plutonium with a new computerized segmented gamma scan instrument. Los Alamos Scientific Laboratory, LA-UR-74-924Google Scholar
  11. 11.
    Estep R, Prettyman T, Sheppard G (1993) Tomographic gamma scanning to assay heterogeneous waste. Nucl Sci Eng 118:145–152CrossRefGoogle Scholar
  12. 12.
    Menlove H, Swansen J (1985) A high-performance neutron time correlation counter. Nucl Technol 71:497–505CrossRefGoogle Scholar
  13. 13.
    Krick M, Swansen J (1984) Neutron multiplicity and multiplication measurements. Nucl Instrum Methods 219:384–393CrossRefGoogle Scholar
  14. 14.
    Langer D, Krick M, Ensslin N, Bosler G, Dytlewski N (1991) Neutron multiplicity counter development. In: Proceedings of the 13th annual ESARDA symposium, AvignonGoogle Scholar
  15. 15.
    Stewart J, Krick M, Langer D, Wenz T (1998) Neutron multiplicity assay of impure materials using four different neutron counters. In: 39th annual meeting of the Institute for Nuclear Materials Management, NaplesGoogle Scholar
  16. 16.
    Menlove H, Foley J, Bosler G (1980) Application of the active well coincidence counter to the measurement of uranium. In: 2nd symposium on safeguards and nuclear material management, EdinburghGoogle Scholar
  17. 17.
    MacMurdo K, Bowman W (1977) Assay of fissile materials by a cyclic method of neutron activation and delayed neutron counting. Nucl Instrum Methods 141:299–306CrossRefGoogle Scholar
  18. 18.
    Menlove H, Crane T (1978) A 252Cf Nondestructive assay system for fissile material. Nucl Instrum Methods 152:549–557CrossRefGoogle Scholar
  19. 19.
    Kunz W, Atencio J, Caldwell J (1980) A 1-nCi/g Sensitivity transuranic waste assay system using pulsed neutron interrogation. In: 21st annual meeting of the Institute for Nuclear Materials ManagementGoogle Scholar
  20. 20.
    Caldwell J, Hastings R, Herrera G, Kunz W (1986) The Los Alamos second-generation system for passive and active neutron assays of drum-sized containers. Los Alamos National Laboratory LA-10774-MSGoogle Scholar
  21. 21.
    Rinard P, Coop K, Nicholas N, Menlove H (1994) Comparison of shuffler and differential die-away technique instruments for the assay of fissile materials in 55-gallon waste drums. J Nucl Mater Manag 22(3):4–28Google Scholar
  22. 22.
    Coop K, Hollas C (1996) Epithermal interrogation of fissile waste. Institute of Nuclear Materials Management Annual Meeting, NaplesGoogle Scholar
  23. 23.
    Rooney B, York R, Close D, Williams H (1998) Active interrogation package monitor. IEEE Nuclear Science Symposium, TorontoGoogle Scholar
  24. 24.
    Bracken D, Biddle R, Carillo L, Hypes P, Rudy C, Schneider C, Smith M (2002) Application guide to safeguards calorimetry. Los Alamos National Laboratory LA-13867-MGoogle Scholar
  25. 25.
    Walsh T, Hamilton R, Baker E, Hurlbut S, Fazzari D, Delegard C, McRae L, Liebetrau A, Lemaire R, DeRidder P (1996) Plutonium assay for safeguards purposes: material heterogeneity and application of calorimetry. In: 37th annual meeting of the Institute for Nuclear Materials Management, NaplesGoogle Scholar
  26. 26.
    Thornton M, Vassallo G, Miller J, Mason J (1995) Design and performance testing of a tritium calorimeter. Nucl Instrum Methods A363:598–603CrossRefGoogle Scholar
  27. 27.
    Guardini S (2003) Performance values for nondestructive assay (NDA) techniques applied to safeguards: the 2002 evaluation by the ESARDA NDA Working Group. ESARDA Bulletin 31Google Scholar
  28. 28.
    Wallace R, Anzelon G, Essner J (2009) Safeguards information from open sources. J Nucl Mater Manag 37(4):30–40Google Scholar
  29. 29.
    Hitchens T (2006) European eyes in the sky: strategic independence is focus as security comes to the forefront. Imaging Notes 21(3):20–24Google Scholar
  30. 30.
    Niemeyer I (2009) Safeguards information from satellite imagery. J Nucl Mater Manag 37(4):41–48Google Scholar
  31. 31.
    Pabian F (2008) Commercial satellite imagery: another tool in the nonproliferation verification and monitoring toolkit, Chapter 12 of nuclear safeguards, security, and nonproliferation. Elsevier, New YorkGoogle Scholar
  32. 32.
    Hannon W (1985) Seismic verification of a comprehensive test ban. Science 227(4684):251–257CrossRefGoogle Scholar
  33. 33.
    Bache T (1982) Estimating the yield of underground nuclear explosions. Bull Seismol Soc Am 72(6B):S131–S168Google Scholar
  34. 34.
    Taylor S, Dowla F (1991) Spectral yield estimation of NTS explosions. Bull Seismol Soc Am 81(4):1292–1308Google Scholar
  35. 35.
    Yutaka M, Tetsuzo O, Hiroshi N, Hideo N (1998) Overview of atmospheric radionuclide monitoring techniques for CTBT International Monitoring System, Proceedings of the annual meeting of INMM Japan Chapter 19:129–130Google Scholar
  36. 36.
    Carrigan C, Heinie R, Hudson G, Nitao J, Zucca J (1996) Trace gas emissions on geological fualts as indicators of underground nuclear testing. Nature 382:528–531CrossRefGoogle Scholar
  37. 37.
    Ferguson C, Potter W, Sands A, Spector L, Wehling F (2005) The four faces of nuclear terrorism. Routledge, New YorkGoogle Scholar
  38. 38.
    Jenkins BM (2008) Will terrorists go nuclear? Prometheus Books, New YorkGoogle Scholar
  39. 39.
    Allison G (2005) Nuclear terrorism: the ultimate preventable catastrophe. Holt Paperbacks, New YorkGoogle Scholar
  40. 40.
    Kerst R (2009) Trends and patterns in illicit trafficking of radioactive sources. LLNL-GS-0052-2009, Lawrence Livermore National LaboratoryGoogle Scholar
  41. 41.
    Battelle Memorial Institute (2009) Nuclear smuggling handbook: case studies and detection methodsGoogle Scholar
  42. 42.
    Mayer K, Wallenius M, Fanghanel T (2007) Nuclear forensic science – from cradle to maturity. J Alloys Compd 444–445:50–56CrossRefGoogle Scholar
  43. 43.
    Wallenius M, Lutzenkirchen K, Mayer K, Ray I, de Las Heras LA, Betti M, Crombroom O, Hild M, Lynch B, Nicholl A, Ottmar H, Rasmussen G, Schubert A, Tamborini G, Thiele H, Wagner W, Walker C, Suleger E (2007) Nuclear forensic investigations with a focus on plutonium. J Alloys Compounds 444–445:57–62CrossRefGoogle Scholar
  44. 44.
    Sullivan C, Garner S, Lombardi M, Butterfied K, Smith-Nelson M (2007) Evaluation of key detector parameters for isotope identification. IEEE Nucl Sci Symp Conf Rec 2:1181–1184Google Scholar
  45. 45.
    Keyser R, Rwomey T, Upp D (2005) A Comparison of an HPGe-based and Nay-based Radioisotope Identifier (RIID) for radioactive materials. In: ESARDA Symposium, LondonGoogle Scholar
  46. 46.
    Sullivan C, Garner S, Blagoev K, Weiss D (2007) Generation of customized wavelets for the analysis of gamma-ray spectra. Nucl Instrum Methods A 579(1):275–278CrossRefGoogle Scholar
  47. 47.
    Energy Information Administration (2007) International Energy Outlook 2007. DOE/EIA-0484Google Scholar

Books and Reviews

  1. Doyle JE (ed) (2008) Nuclear safeguards, security, and nonproliferation: achieving security with technology and policy. Elsevier, New YorkGoogle Scholar
  2. Hakansson A, Jonter T (2007) An introduction to nuclear non-proliferation and safeguards. SKI Rep 2007:44Google Scholar
  3. IAEA (2007) Combating illicit trafficking in nuclear and other radioactive material: reference manual, vol 6, IAEA nuclear security series. International Atomic Energy Agency, ViennaGoogle Scholar
  4. Moody K, Hutcheon I, Grant P (2005) Nuclear forensic analysis. CRC Press, Boca RatonCrossRefGoogle Scholar
  5. Mozley RF (1998) The politics and technology of nuclear proliferation. University of Washington Press, Seattle/LondonGoogle Scholar

Copyright information

© This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2018

Authors and Affiliations

  1. 1.Los Alamos National Laboratory, Nuclear Nonproliferation DivisionAdvanced Nuclear Technology GroupLos AlamosUSA

Personalised recommendations