Skip to main content

Spinal Motoneurons

  • Reference work entry
  • First Online:

Abstract

In a sense, motoneurons are arguably the most important class of neurons in the central nervous system (CNS) because without them, we could neither move nor breathe. Over a century ago, the great English physiologist, Sir Charles Sherrington, recognized that “… at the termination of every reflex arc we find a final neurone, the ultimate conductive link to an effector organ, gland or muscle.” Sherrington named these final neurons “motor neurons” (or motoneurons in most papers today) and called them “the final common path” that receives information from many sources both within and outside of the central nervous system, integrating this information and transmitting it to the muscle fibers that they innervate. Since Sherrington’s time, motoneurons have been extensively studied because of their critical role in the control of all movement in both invertebrate and vertebrate animals. In a real sense, motoneurons are one of only a very few categories of millions of neurons in the central nervous system (CNS) that have a clearly defined function – to cause activation of muscle fibers.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   2,999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alvarez FJ, Dewey DE, Harrington DA, Fyffe REW (1997) Cell-type specific organization glycine receptor clusters in the mammalian spinal cord. J Comp Neurol 379:150–170

    Article  CAS  PubMed  Google Scholar 

  • Alvarez F, Pearson J, Harrington D, Dewey D, Torbeck L, Fyffe R (1998) Distribution of 5-hydroxtryptamine-immunoreative boutons on alpha-motoneurons in the lumbar spinal cord of adult cats. J Comp Neurol 393:69–83

    Article  CAS  PubMed  Google Scholar 

  • Alvarez FJ, Villalba RM, Zerda R, Schneider SP (2004) Vesicular glutamate transporters in the spinal cord, with special references to sensory primary afferent synapses. J Comp Neurol 472:257–280

    Article  CAS  PubMed  Google Scholar 

  • Binder MD, Mendell LM (1990) The segmental motor system. Oxford University Press, New York, 397 p

    Google Scholar 

  • Binder MD, Heckman CJ, Powers RK (1996) The physiological control of motoneuron activity. In: Rowell LB, Shepherd JT (eds) Handbook of physiology sect 12 exercise: regulation and integration of multiple systems. American Physiological Society, New York, pp 3–53

    Google Scholar 

  • Brännström T (1993) Quantitative synaptology of functionally different types of cat medial gastrocnemius alpha-Motoneurons. J Comp Neurol 330(3):439–454

    Article  PubMed  Google Scholar 

  • Brownstone R (2006) Beginning at the end: repetitive firing properties in the final common pathway. Prog Neurobiol 78:156–172

    Article  PubMed  PubMed Central  Google Scholar 

  • Brownstone RM, Krawitz S, Jordan LM (2010) Reversal of the late phase of spike frequency adaptation in cat spinal motoneurons during fictive locomotion. J Neurophysiol 105:1045–1050

    Article  PubMed  PubMed Central  Google Scholar 

  • Burke RE (1967) The composite nature of the monosynaptic excitatory postsynaptic potential. J Neurophysiol 30:1114–1137

    CAS  PubMed  Google Scholar 

  • Burke RE (1968a) Firing patterns of gastrocnemius motor units in the decerebrate cat. J Physiol (Lond) 196:631–645

    Article  CAS  Google Scholar 

  • Burke RE (1968b) Group Ia synaptic input to fast and slow twitch motor units of cat triceps surae. J Physiol (Lond) 196:605–630

    Article  CAS  Google Scholar 

  • Burke RE (1981) Motor units: anatomy, physiology and functional organization. In: Brooks VB (ed) Handbook of physiology, sect 1: the nervous system, vol II motor control, part 1. American Physiological Society, Washington, DC, pp 345–422

    Google Scholar 

  • Burke RE, Glenn LL (1996) Horseradish peroxidase study of the spatial and electrotonic distribution of group Ia synapses on type-identified ankle extensor motoneurons of the cat. J Comp Neurol 372:465–485

    Article  CAS  PubMed  Google Scholar 

  • Burke RE, Tsairis P (1973) Anatomy and innervation ratios in motor units of cat gastrocnemius. J Physiol (Lond) 234:749–765

    Article  CAS  Google Scholar 

  • Burke RE, Fedina L, Lundberg A (1971) Spatial synaptic distribution of recurrent and group Ia inhibitory systems in cat spinal motoneurones. J Physiol (Lond) 214:305–326

    Article  CAS  Google Scholar 

  • Burke RE, Levine DN, Tsairis P, Zajac FE (1973) Physiological types and histochemical profiles in motor units of the cat gastrocnemius. J Physiol (Lond) 234:723–748

    Article  CAS  Google Scholar 

  • Burke RE, Rymer WZ, Walsh JV (1976) Relative strength of synaptic input from short latency pathways to motor units of defined type in cat medial gastrocnemius. J Neurophysiol 39:447–458

    CAS  PubMed  Google Scholar 

  • Burke RE, Strick PL, Kanda K, Kim CC, Walmsley B (1977) Anatomy of medial gastrocnemius and soleus motor nuclei in cat spinal cord. J Neurophysiol 40:667–680

    CAS  PubMed  Google Scholar 

  • Burke RE, Dum RP, Fleshman JW, Glenn LL, Lev-Tov A, O’Donovan MJ, Pinter MJ (1982) An HRP study of the relation between cell size and motor unit type in cat ankle extensor motoneurons. J Comp Neurol 209:17–28

    Article  CAS  PubMed  Google Scholar 

  • Carp JS (1992) Physiological properties of primate lumbar motoneurons. J Neurophysiol 68(4):1121–1132

    CAS  PubMed  Google Scholar 

  • Coombs JS, Eccles JC, Fatt P (1955a) The electrical properties of the motoneurone membrane. J Physiol (Lond) 130:291–325

    Article  CAS  Google Scholar 

  • Coombs JS, Eccles JC, Fatt P (1955b) Excitatory synaptic actions in motoneurons. J Physiol (Lond) 130:374–395

    Article  CAS  Google Scholar 

  • Creed RS, Denny-Brown D, Eccles JC, Liddell EGT, Sherrington CS (1932) Reflex activity of the spinal cord. Oxford University Press, London

    Google Scholar 

  • Cullheim S, Fleshman JW, Glenn LL, Burke RE (1987) Membrane area and dendritic structure in type-identified triceps surae alpha-motoneurons. J Comp Neurol 255:68–81

    Article  CAS  PubMed  Google Scholar 

  • Dasen J, Jessell T (2009) HOX networks and the origins of motor neuron diversity. Curr Top Dev Biol 88:169–200

    Article  CAS  PubMed  Google Scholar 

  • Eccles JC (1957) The physiology of nerve cells. The Johns Hopkins Press, Baltimore

    Google Scholar 

  • Eccles JC (1964) The physiology of synapses. Academic, New York

    Book  Google Scholar 

  • ElBasiouny S, Schuster J, Heckman C (2010) Persistent inward currents in spinal motoneurons: important for normal function but potentially harmful after spinal cord injury and in amyotrophic lateral scerosis. Clin Neurophysiol 121:1669–1679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Emonet-Denand F, Jami L, Laporte Y (1975) Skeletofusimotor axons in hind-limb muscles of the cat. J Physiol (Lond) 249:153–166

    Article  CAS  Google Scholar 

  • Fleshman JW, Munson JB, Sypert GW (1981a) Homonymous projection of individual group Ia-fibers to physiologically characterized medial gastrocnemius motoneurons in the cat. J Neurophysiol 46:1339–1348

    CAS  PubMed  Google Scholar 

  • Fleshman JW, Munson JB, Sypert GW, Friedman WA (1981b) Rheobase, input resistance, and motor-unit type in medial gastrocnemius motoneurons in the cat. J Neurophysiol 46:1326–1338

    CAS  PubMed  Google Scholar 

  • Fleshman JW, Segev I, Burke RE (1988) Electrotonic architecture of type-identified alpha-motoneurons in the cat spinal cord. J Neurophysiol 60:60–85

    CAS  PubMed  Google Scholar 

  • Fyffe REW (1990) Evidence for separate morphological classes of Renshaw cells in the cat’s spinal cord. Brain Res 536(1–2):301–304

    Article  CAS  PubMed  Google Scholar 

  • Fyffe REW (1991) Spatial distribution of recurrent inhibitory synapses on spinal motoneurons in the cat. J Neurophysiol 65(5):1134–1149

    CAS  PubMed  Google Scholar 

  • Garnett R, Stephens JA (1981) Changes in the recruitment threshold of motor units produced by cutaneous stimulation in man. J Physiol (Lond) 311:463–473

    Article  CAS  Google Scholar 

  • Gauthier GF, Burke RE, Lowey S, Hobbs AW (1983) Myosin isozymes in normal and cross-reinnervated cat skeletal muscle fibers. J Cell Biol 97:756–771

    Article  CAS  PubMed  Google Scholar 

  • Gossard J-P, Floeter MK, Kawai Y, Burke RE, Chang T, Schiff SJ (1994) Fluctuations of excitability in the monosynaptic reflex pathway to lumbar motoneurons in the cat. J Neurophysiol 72:1227–1239

    CAS  PubMed  Google Scholar 

  • Granit R (1970) The basis of motor control. Academic, New York, p 346

    Google Scholar 

  • Hashizume K, Kanda K, Burke RE (1988) The medial gastrocnemius motor nucleus in the rat: age-related changes in the number and size of motoneurons. J Comp Neurol 269:425–430

    Article  CAS  PubMed  Google Scholar 

  • Henneman E, Mendell LM (1981) Functional organization of motoneuron pool and its inputs. In: Brooks VB (ed) Handbook of physiology, sect I, vol II, The nervous system, part 1. American Physiological Society, Bethesda, pp 423–507

    Google Scholar 

  • Hounsgaard J, Hultborn H, Jespersen B, Kiehn O (1984) Intrinsic membrane properties causing a bistable behaviour of α-motoneurons. Exp Brain Res 55:391–394

    Article  CAS  PubMed  Google Scholar 

  • Howell JN, Fuglevand AJ, Walsh ML, Bigland-Ritchie B (1995) Motor unit activity during isometric and concentric-eccentric contractions of the human first dorsal interosseous muscle. J Neurophysiol 74:901–904

    CAS  PubMed  Google Scholar 

  • Kanda K, Hashizume K (1989) Changes in properties of the medial gastrocnemius motor units in aging rats. J Neurophysiol 61:737–746

    CAS  PubMed  Google Scholar 

  • Kanda K, Burke RE, Walmsley B (1977) Differential control of fast and slow twitch motor units in the decerebrate cat. Exp Brain Res 29:57–74

    Article  CAS  PubMed  Google Scholar 

  • Kanning KC, Kaplan A, Henderson CE (2010) Motor neuron diversity in development and disease. Annu Rev Neurosci 33:409–440

    Article  CAS  PubMed  Google Scholar 

  • Kernell D (1965a) High-frequency repetitive firing of cat lumbosacral motoneurones stimulated by long-lasting injected currents. Acta Physiol Scand 65:74–86

    Article  Google Scholar 

  • Kernell D (1965b) The limits of firing frequency in cat lumbosacral motoneurones possessing different time course of after hyperpolarization. Acta Physiol Scand 65:87–100

    Article  Google Scholar 

  • Laporte Y, Emonet-Denand F, Jami L (1981) The skeletofusimotor or β-innervation of mammalian muscle spindles. Trends NeuroSci 4:97–99

    Article  Google Scholar 

  • Lee RH, Heckman CJ (1998a) Bistability in spinal motoneurons in vivo: systematic variations in rhythmic firing patterns. J Neurophysiol 80:572–582

    CAS  PubMed  Google Scholar 

  • Lee RH, Heckman CJ (1998b) Bistability in spinal motoneurons in vivo: systematic variations in persistent inward currents. J Neurophysiol 80:583–593

    CAS  PubMed  Google Scholar 

  • Li Y, Bennett DJ (2003) Persistent sodium and calcium currents cause plateau potentials in motoneurons of chronic spinal rats. J Neurophysiol 90:857–869

    Article  CAS  PubMed  Google Scholar 

  • Liddell EGT, Sherrington CS (1925) Recruitment and some other factors of reflex inhibition. Proc Roy Soc Ser B 97:488–518

    Article  Google Scholar 

  • Matthews PBC (1981) Muscle spindles: their messages and their fusimotor supply. In: Brookhart JM, Mountcastle VB (eds) Handbook of physiology, sect 1: the nervous system, vol II, Motor control, part 1. American Physiological Society, Bethesda, pp 189–228

    Google Scholar 

  • McDonagh JC, Binder MD, Reinking RM, Stuart DG (1980) Tetrapartite classification of motor units of cat tibialis anterior. J Neurophysiol 44:696–712

    CAS  PubMed  Google Scholar 

  • Mendell LM, Henneman E (1971) Terminals of single Ia fibers: location, density, and distribution within a pool of 300 homonymous motoneurons. J Neurophysiol 34:171–187

    CAS  PubMed  Google Scholar 

  • Mitchell CS, Lee RH (2011) The dynamics of somatic input processing in spinal motoneurons in vivo. J Neurophysiol 105:1170–1178

    Article  PubMed  Google Scholar 

  • Moschovakis AK, Burke RE, Fyffe REW (1991) The size and dendritic structure of HRP-labeled gamma motoneurons in the cat spinal cord. J Comp Neurol 311:531–545

    Article  CAS  PubMed  Google Scholar 

  • Murray K, Stephens M, Ballou E, Heckman C, Bennett D (2011) Motoneuron excitability and muscle spasms are regulated by 5-HT2B and 5-HT2C receptor activity. J Neurophysiol 105:731–748

    Article  PubMed  Google Scholar 

  • Nardone A, Romano C, Schieppati M (1989) Selective recruitment of high-threshold human motor units during voluntary isotonic lengthening of active muscles. J Physiol (Lond) 409:451–471

    Article  CAS  Google Scholar 

  • Nelson PG, Burke RE (1967) Delayed depolarization in cat spinal motoneurons. Exp Neurol 17:16–26

    Article  CAS  PubMed  Google Scholar 

  • Prather BD, Clark BD, Cope TC (2002) Firing rate modulation of motoneurons activated by cutaneous and muscle receptor afferents in the decerebrate cat. J Neurophysiol 88:1867–1879

    CAS  PubMed  Google Scholar 

  • Rall W (1977) Core conductor theory and cable properties of neurons. In: Kandel ER (ed) The nervous system, vol 1, Cellular biology of neurons, part I. American Physiological Society, Washington, DC, pp 39–97

    Google Scholar 

  • Rank MM, Murray KC, Stephens MJ, D’Amico J, Gorassini MA, Bennett DJ (2011) Transmission and muscle spasms after chronic spinal cord injury. J Neurophysiol 105:410–422

    Article  CAS  PubMed  Google Scholar 

  • Ranvier L (1874) De quelques faits relatifs à l’histologie et à la physiologie des muscles striés. Arch Physiol Norm Pathol 1:5–18

    Google Scholar 

  • Romanes G (1964) The motor pools of the spinal cord. Prog Brain Res 11:93–119

    Article  CAS  PubMed  Google Scholar 

  • Sherrington C (1947) The integrative action of the nervous system. Yale University Press, New Have, 413 p

    Google Scholar 

  • Smith JL, Betts B, Edgerton VR, Zernicke RF (1980) Rapid ankle extension during paw shakes: selective recruitment of fast ankle extensors. J Neurophysiol 43:612–620

    CAS  PubMed  Google Scholar 

  • Van de Graaff KM, Frederick EC, Williamson RG, Goslow GE Jr (1977) Motor units and fiber types of primary ankle extensors of the skunk Mephitis mephitis. J Neurophysiol 40:1424–1431

    Google Scholar 

  • Walmsley B, Hodgson JA, Burke RE (1978) Forces produced by medial gastrocnemius and soleus muscles during locomotion in freely moving cats. J Neurophysiol 41:1203–1216

    CAS  PubMed  Google Scholar 

  • Zagoraiou L, Akay T, Martin J, Brownstone R, Jessell T, Miles G (2009) A cluster of cholinergic premotor interneurons modulates mouse locomotor activity. Neuron 64:645–662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zajac FE, Faden JS (1985) Relationship among recruitment order, axonal conduction velocity, and muscle-unit properties of type-identified motor units in cat plantaris muscle. J Neurophysiol 53:1303–1322

    CAS  PubMed  Google Scholar 

  • Zengel JE, Reid SA, Sypert GW, Munson JB (1985) Membrane electrical properties and prediction of motor-unit type of cat medial gastrocnemius motoneurons in the cat. J Neurophysiol 53:1323–1344

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Burke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this entry

Cite this entry

Burke, R. (2016). Spinal Motoneurons. In: Pfaff, D., Volkow, N. (eds) Neuroscience in the 21st Century. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3474-4_33

Download citation

Publish with us

Policies and ethics