Advertisement

Models of the Cortico-cerebellar System

Reference work entry
  • 204 Downloads

Abstract

Without the cerebellum, organisms are challenged in the learning and execution of accurate and coordinated actions. It has a central position in the nervous system receiving and projecting to the spinal cord, midbrain, and cerebral cortex, implying convergence of sensory and motor streams. Its highly conserved neuroarchitecture would imply it is very good at what it does and that what it does is very general. Here we review theoretical, modeling, and computational work that has attempted to capture the dynamics and/or function of the cerebellum.

Keywords

Adaptive filter model Bottom-up models Cerebellar nucleus Coupled oscillators Dynamic models Golgi gating Granule cell models Reverberating loops model Spatiotemporal patterns in cerebellum Tidal wave Echo-state machine Forward and inverse models Functional models Golgi gating Granule cell models Inferior olivary models Coupled oscillators Echo-state machine Phase resets Synchronous groups Marr-Albus type models Adaptive filter model and distributed synaptic plasticity Information encoding and channel capacity Purkinje neuron single cell modeling Successes and failures Pellionisz and Llinas’s model Purkinje neuron single cell modeling Reverberating loops model Synchronous groups Tidal wave hypothesis 

References

  1. Albus JS (1971) A theory of cerebellar function. Math Biosci 10(1/2):25–61. doi:10.1016/j.gaitpost.2012.10.015CrossRefGoogle Scholar
  2. Angelaki DE, Klier EM, Snyder LH (2009) A vestibular sensation: probabilistic approaches to spatial perception. Neuron 64(4):448–461. doi:10.1016/j.neuron.2009.11.010PubMedPubMedCentralCrossRefGoogle Scholar
  3. Ankri L, Husson Z, Pietrajtis K, Proville R, Léna C, Yarom Y et al (2015) A novel inhibitory nucleo-cortical circuit controls cerebellar Golgi cell activity. eLife 4. doi:10.7554/eLife.06262Google Scholar
  4. Antunes G, De Schutter E (2012) A stochastic signaling network mediates the probabilistic induction of cerebellar long-term depression. J Neurosci 32(27):9288–9300. doi:10.1523/JNEUROSCI.5976-11.2012PubMedCrossRefGoogle Scholar
  5. Anwar H, Hong S, De Schutter E (2012) Controlling Ca2+-activated K+ channels with models of Ca2+ buffering in Purkinje cells. Cerebellum (London, UK) 11(3):681–693. doi:10.1007/s12311-010-0224-3CrossRefGoogle Scholar
  6. Anwar H, Hepburn I, Nedelescu H, Chen W, De Schutter E (2013) Stochastic calcium mechanisms cause dendritic calcium spike variability. J Neurosci 33(40):15848–15867. doi:10.1523/JNEUROSCI.1722-13.2013PubMedCrossRefGoogle Scholar
  7. Apps R, Hawkes R (2009) Cerebellar cortical organization: a one-map hypothesis. Nat Rev Neurosci 10(9):670–681. doi:10.1038/nrn2698PubMedCrossRefGoogle Scholar
  8. Armstrong BD, Harvey RJ (1966) Responses in the inferior olive to stimulation of the cerebellar and cerebral cortices in the cat. J Physiol 187(3):553–574PubMedPubMedCentralCrossRefGoogle Scholar
  9. Armstrong DM, Harvey RJ (1968) Responses to a spino-olivo-cerebellar pathway in the cat. J Physiol 194(1):147–168PubMedPubMedCentralCrossRefGoogle Scholar
  10. Barbour B (1993) Synaptic currents evoked in Purkinje cells by stimulating individual granule cells. Neuron 11(4):759–769PubMedCrossRefGoogle Scholar
  11. Barbour B, Brunel N, Hakim V, Nadal J-P (2007) What can we learn from synaptic weight distributions? Trends Neurosci 30(12):622–629. doi:10.1016/j.tins.2007.09.005PubMedCrossRefGoogle Scholar
  12. Bazzigaluppi P, Bazzigali (2013) The inferior olive: coupling, oscillations and bursting activity. Erasmus MC, RotterdamGoogle Scholar
  13. Bazzigaluppi P, Ruigrok TJ, Saisan P, de Jeu MTG, De Zeeuw CI (2012) Properties of the nucleo-olivary pathway: an in vivo whole-cell patch clamp study. PLoS One 7(9):e46360. doi:10.1371/journal.pone.0046360.t003PubMedPubMedCentralCrossRefGoogle Scholar
  14. Billings G, Piasini E, Lorincz A, Nusser Z, Silver RA (2014) Network structure within the cerebellar input layer enables lossless sparse encoding. Neuron 83(4):960–974. doi:10.1016/j.neuron.2014.07.020PubMedPubMedCentralCrossRefGoogle Scholar
  15. Bloedel JR, Roberts WJ (1971) Action of climbing fibers in cerebellar cortex of the cat. J Neurophysiol 34(1):17–31PubMedGoogle Scholar
  16. Blot A, Barbour B (2013) Analysis of the study of the cerebellar pinceau by Korn and Axelrad. Biorxiv preprint server http://doi.org/10.1101/001123
  17. Blot A, Barbour B (2014) Ultra-rapid axon-axon ephaptic inhibition of cerebellar Purkinje cells by the pinceau. Nat Neurosci 17(2):289–295. doi:10.1038/nn.3624PubMedCrossRefGoogle Scholar
  18. Bower J (2010) Model-founded explorations of the roles of molecular layer inhibition in regulating Purkinje cell responses in cerebellar cortex: more trouble for the beam hypothesis. Front Neurosci 4:1–37Google Scholar
  19. Braitenberg V (1965) A note on the control of voluntary movements. In: Proceedings from cybernetics of neural processes, Napoli, pp 1–8Google Scholar
  20. Braitenberg V (1967) Is the cerebellar cortex a biological clock in the millisecond range? Prog Brain Res, 1–15Google Scholar
  21. Braitenberg V (1983) The cerebellum revisited. J Theoret Neurobiol 2:237–241Google Scholar
  22. Braitenberg V (1987) The cerebellum and the physics of movement: some speculations. In: Cerebellum and neuronal plasticity. Plenum Press, New York, pp 193–208CrossRefGoogle Scholar
  23. Braitenberg V, Atwood R (1958) Morphological observations on the cerebellar cortex. J Comp Neurol 109(1):1PubMedCrossRefGoogle Scholar
  24. Braitenberg V, Heck D, Sultan F (1997) The detection and generation of sequences as a key to cerebellar function: experiments and theory. Behav Brain Sci 20(2):229–245; discussion 245–277PubMedCrossRefGoogle Scholar
  25. Casellato C, Antonietti A, Garrido JA, Carrillo RR, Luque NR, Ros E et al (2014) Adaptive robotic control driven by a versatile spiking cerebellar network. PLoS One 9(11):e112265. doi:10.1371/journal.pone.0112265PubMedPubMedCentralCrossRefGoogle Scholar
  26. Chaumont J, Guyon N, Valera AM, Dugué GP, Popa D, Marcaggi P et al (2013) Clusters of cerebellar Purkinje cells control their afferent climbing fiber discharge. Proc Natl Acad Sci 110(40):16223–16228. doi:10.1073/pnas.1302310110PubMedPubMedCentralCrossRefGoogle Scholar
  27. Clark SL (1939) Responses following electrical stimulation of the cerebellar cortex in the normal cat. J Neurosci 2(1):19–35Google Scholar
  28. Clopath C, Nadal J-P, Brunel N (2012) Storage of correlated patterns in standard and bistable Purkinje cell models. PLoS Comput Biol 8(4):e1002448. doi:10.1371/journal.pcbi.1002448.g005PubMedPubMedCentralCrossRefGoogle Scholar
  29. Clopath C, Badura A, De Zeeuw CI, Brunel N (2014) A cerebellar learning model of vestibulo-ocular reflex adaptation in wild-type and mutant mice. J Neurosci 34(21):7203–7215. doi:10.1523/JNEUROSCI.2791-13.2014PubMedCrossRefGoogle Scholar
  30. Coesmans M, Weber JT, De Zeeuw CI, Hansel C (2004) Bidirectional parallel fiber plasticity in the cerebellum under climbing fiber control. Neuron 44(4):691–700. doi:10.1016/j.neuron.2004.10.031PubMedCrossRefGoogle Scholar
  31. D’Angelo E, Nieus T, Maffei A, Armano S, Rossi P, Taglietti V et al (2001) Theta-frequency bursting and resonance in cerebellar granule cells: experimental evidence and modeling of a slow k+-dependent mechanism. J Neurosci 21(3):759–770PubMedGoogle Scholar
  32. De Gruijl JR (2012) Timing and graded signals in the inferior olive. Erasmus MC, RotterdamGoogle Scholar
  33. De Gruijl JR, Bazzigaluppi P, de Jeu MTG, De Zeeuw CI (2012) Climbing fiber burst size and olivary sub-threshold oscillations in a network setting. PLoS Comput Biol 8(12):e1002814. doi:10.1371/journal.pcbi.1002814PubMedPubMedCentralCrossRefGoogle Scholar
  34. De Gruijl JR, Bosman LWJ, De Zeeuw CI, de Jeu MTG (2013) Inferior olive: all ins and outs. In: Handbook of the cerebellum and cerebellar disorders. Springer Netherlands, Dordrecht, pp 1013–1058. doi:10.1007/978-94-007-1333-8_43CrossRefGoogle Scholar
  35. De Schutter E, Bower JM (1994a) An active membrane model of the cerebellar Purkinje cell II. Simulation of synaptic responses. J Neurophysiol 71(1):401–419PubMedGoogle Scholar
  36. De Schutter E, Bower JM (1994b) An active membrane model of the cerebellar Purkinje cell. I. Simulation of current clamps in slice. J Neurophysiol 71(1):375–400PubMedGoogle Scholar
  37. De Schutter E, Bower JM (1994c) Simulated responses of cerebellar Purkinje cells are independent of the dendritic location of granule cell synaptic inputs. Proc Natl Acad Sci U S A 91(11):4736–4740PubMedPubMedCentralCrossRefGoogle Scholar
  38. De Schutter E, Steuber V (2009) Patterns and pauses in Purkinje cell simple spike trains: experiments, modeling and theory. Neuroscience 162(3):816–826. doi:10.1016/j.neuroscience.2009.02.040PubMedCrossRefGoogle Scholar
  39. de Solages C, Szapiro G, Brunel N, Hakim V, Isope P, Buisseret P et al (2008) High-frequency organization and synchrony of activity in the Purkinje cell layer of the cerebellum. Neuron 58(5):775–788. doi:10.1016/j.neuron.2008.05.008PubMedCrossRefGoogle Scholar
  40. De Zeeuw CI, Koekkoek SK, Wylie DR, Simpson JI (1997) Association between dendritic lamellar bodies and complex spike synchrony in the olivocerebellar system. J Neurophysiol 77(4):1747–1758PubMedGoogle Scholar
  41. De Zeeuw CI, van Hemmen L, Kistler WM (2000) Time window control: a model for cerebellar function based on synchronization, reverberation, and time slicing. Prog Brain Res 124:275–297PubMedCrossRefGoogle Scholar
  42. Del Olmo MF, Cheeran B, Koch G, Rothwell JC (2007) Role of the cerebellum in externally paced rhythmic finger movements. J Neurophysiol 98(1):145–152. doi:10.1152/jn.01088.2006PubMedCrossRefGoogle Scholar
  43. Dieudonne S (1998) Submillisecond kinetics and low efficacy of parallel fibre-Golgi cell synaptic currents in the rat cerebellum. J Physiol 510(Pt 3):845–866PubMedPubMedCentralCrossRefGoogle Scholar
  44. Diwakar S, Magistretti J, Goldfarb M, Naldi G, D’Angelo E (2009) Axonal Na+ channels ensure fast spike activation and back-propagation in cerebellar granule cells. J Neurophysiol 101(2):519–532. doi:10.1152/jn.90382.2008PubMedCrossRefGoogle Scholar
  45. Donchin O, Rabe K, Diedrichsen J, Lally N, Schoch B, Gizewski ER, Timmann D (2012) Cerebellar regions involved in adaptation to force field and visuomotor perturbation. J Neurophysiol 107(1):134–147. doi:10.1152/jn.00007.2011PubMedCrossRefGoogle Scholar
  46. Doya K (2002) Metalearning and neuromodulation. Neural Netw 15(4–6):495–506PubMedCrossRefGoogle Scholar
  47. Dugué GP, Brunel N, Hakim V, Schwartz E, Chat M, Lévesque M et al (2009) Electrical coupling mediates tunable low-frequency oscillations and resonance in the cerebellar Golgi cell network. Neuron 61(1):126–139. doi:10.1016/j.neuron.2008.11.028PubMedCrossRefGoogle Scholar
  48. Ebner TJ, Bloedel JR (1981) Temporal patterning in simple spike discharge of Purkinje cells and its relationship to climbing fiber activity. J Neurophysiol 45(5):933–947PubMedGoogle Scholar
  49. Eccles JC, Llinas RR, Sasaki K (1966) Parallel fibre stimulation and the responses induced thereby in the Purkinje cells of the cerebellum. Exp Brain Res (Experimentelle Hirnforschung Expérimentation Cérébrale) 1(1):17–39. doi:10.1007/BF00235207Google Scholar
  50. Eccles JC, Ito M, Szentágothai J (1967) The cerebellum as a neuronal machine. Springer, BerlinCrossRefGoogle Scholar
  51. Eccles JC, Sabah NH, Schmidt RF, Táboríková H (1972) Cutaneous mechanoreceptors influencing impulse discharges in cerebellar cortex. II. In Purkynĕ cells by mossy fiber input. Experimental Brain Research Experimentelle Hirnforschung Expérimentation Cérébrale 15(3):261–277PubMedCrossRefGoogle Scholar
  52. Edelman GM, Gally JA (2001) Degeneracy and complexity in biological systems. Proc Natl Acad Sci U S A 98(24):13763–13768. doi:10.1073/pnas.231499798PubMedPubMedCentralCrossRefGoogle Scholar
  53. Ekerot CF, Gustavsson P, Oscarsson O, Schouenborg J (1987) Climbing fibres projecting to cat cerebellar anterior lobe activated by cutaneous A and C fibres. J Physiol 386:529–538PubMedPubMedCentralCrossRefGoogle Scholar
  54. Fagg AH, Sitko N, Barto AG, Houk J (1997) A computational model of cerebellar learning for limb control. Mh. In: Neural Computation Meeting proceedings, NCM 1997Google Scholar
  55. Frens MA, Mathoera AL, van der Steen J (2001) Floccular complex spike response to transparent retinal slip. Neuron 30(3):795–801PubMedCrossRefGoogle Scholar
  56. Gabbiani F, Midtgaard J, Knöpfel T (1994) Synaptic integration in a model of cerebellar granule cells. J Neurophysiol 72(2):999–1009PubMedGoogle Scholar
  57. Gao Z, Todorov B, Barrett CF, van Dorp S, Ferrari MD, van den Maagdenberg AMJM et al (2012a) Cerebellar ataxia by enhanced CaV2.1 currents is alleviated by Ca2+-dependent K+-channel activators in Cacna1aS218L mutant mice. J Neurosci 32(44):15533–15546. doi:10.1523/JNEUROSCI.2454-12.2012PubMedCrossRefGoogle Scholar
  58. Gao Z, van Beugen BJ, De Zeeuw CI (2012b) Distributed synergistic plasticity and cerebellar learning. Nat Neurosci 13:619–635. doi:10.1038/nrn3312CrossRefGoogle Scholar
  59. Glickstein M, Sultan F, Voogd J (2011) Functional localization in the cerebellum. Cortex 47(1):59–80. doi:10.1016/j.cortex.2009.09.001PubMedCrossRefGoogle Scholar
  60. Han VZ, Grant K, Bell CC (2000) Reversible associative depression and nonassociative potentiation at a parallel fiber synapse. Neuron 27(3):611–622PubMedCrossRefGoogle Scholar
  61. Hansel C, Linden DJ, D’angelo E (2001) Beyond parallel fiber LTD: the diversity of synaptic and non-synaptic plasticity in the cerebellum. Nat Neurosci 4(5):467–475. doi:10.1038/87419PubMedGoogle Scholar
  62. Hawkes R, Sillitoe RV, Chung SH, Fritschy JM, Hoy M (2008) Golgi cell dendrites are restricted by Purkinje cell stripe boundaries in the adult mouse cerebellar cortex. J Neurosci 28(11):2820–2826. doi:10.1523/JNEUROSCI.4145-07.2008PubMedCrossRefGoogle Scholar
  63. Heck D, Sultan F (2002) Cerebellar structure and function: making sense of parallel fibers. Hum Mov Sci 21(3):411–421PubMedCrossRefGoogle Scholar
  64. Herzfeld DJ, Kojima Y, Soetedjo R, Shadmehr R (2015) Encoding of action by the Purkinje cells of the cerebellum. Nature 526(7573):439–442. doi:10.1038/nature15693PubMedPubMedCentralCrossRefGoogle Scholar
  65. Hoogland TM, De Gruijl JR, Witter L, Canto CB, De Zeeuw CI (2015) Role of synchronous activation of cerebellar Purkinje cell ensembles in multi-joint movement control. Curr Biol 25(9):1–10. doi:10.1016/j.cub.2015.03.009CrossRefGoogle Scholar
  66. Houck BD, Person AL (2014) Cerebellar loops: a review of the nucleocortical pathway. Cerebellum 13(3):378–385. doi:10.1007/s12311-013-0543-2PubMedPubMedCentralCrossRefGoogle Scholar
  67. Houk J, Fagg A (2014) A computational model for cerebellar learning for limb control. 1–16Google Scholar
  68. Hull C, Regehr WG (2012) Identification of an inhibitory circuit that regulates cerebellar Golgi cell activity. Neuron 73(1):149–158. doi:10.1016/j.neuron.2011.10.030PubMedPubMedCentralCrossRefGoogle Scholar
  69. Ito M (1989) Long-term depression. Annu Rev Neurosci 12:85–102PubMedCrossRefGoogle Scholar
  70. Ito M, Kano M (1982) Long-lasting depression of parallel fiber-purkinje cell transmission induced by conjunctive stimulationo of parallel fibers and climbing fibers in the cerebellar cortex. Neurosci Lett 33:253–258PubMedCrossRefGoogle Scholar
  71. Jacobson GA, Lev I, Yarom Y, Cohen D (2009) Invariant phase structure of olivo-cerebellar oscillations and its putative role in temporal pattern generation. Proc Natl Acad Sci 106(9):3579–3584. doi:10.1073/pnas.0806661106PubMedPubMedCentralCrossRefGoogle Scholar
  72. Jaeger D (2003) No parallel fiber volleys in the cerebellar cortex: evidence from cross-correlation analysis between Purkinje cells in a computer model and in recordings from anesthetized rats. J Comput Neurosci 14(3):311–327PubMedCrossRefGoogle Scholar
  73. Jirenhed DA, Hesslow G, Bengtsson F (2007) Acquisition, extinction, and reacquisition of a cerebellar cortical memory trace. J Neurosci 27(10):2493–2502. doi:10.1523/JNEUROSCI.4202-06.2007PubMedCrossRefGoogle Scholar
  74. Jörntell H, Bengtsson F, Schonewille M, De Zeeuw CI (2010) Cerebellar molecular layer interneurons – computational properties and roles in learning. Trends Neurosci 33(11):524–532. doi:10.1016/j.tins.2010.08.004PubMedCrossRefGoogle Scholar
  75. Kalmbach BE, Voicu H, Ohyama T, Mauk MD (2011) A subtraction mechanism of temporal coding in cerebellar cortex. J Neurosci 31(6):2025–2034. doi:10.1523/JNEUROSCI.4212-10.2011PubMedPubMedCentralCrossRefGoogle Scholar
  76. Kazantsev VB, Nekorkin VI, Makarenko VI, Llinas RR (2003) Olivo-cerebellar cluster-based universal control system. Proc Natl Acad Sci U S A 100(22):13064–13068. doi:10.1073/pnas.1635110100PubMedPubMedCentralCrossRefGoogle Scholar
  77. Kazantsev VB, Nekorkin VI, Makarenko VI, Llinas RR (2004) Self-referential phase reset based on inferior olive oscillator dynamics. Proc Natl Acad Sci U S A 101(52):18183–18188. doi:10.1073/pnas.0407900101PubMedPubMedCentralCrossRefGoogle Scholar
  78. Khaliq ZM, Raman IM (2006) Relative contributions of axonal and somatic Na channels to action potential initiation in cerebellar Purkinje neurons. J Neurosci 26(7):1935–1944. doi:10.1523/JNEUROSCI.4664-05.2006PubMedCrossRefGoogle Scholar
  79. Khaliq ZM, Gouwens NW, Raman IM (2003) The contribution of resurgent sodium current to high-frequency firing in Purkinje neurons: an experimental and modeling study. J Neurosci 23(12):4899–4912PubMedGoogle Scholar
  80. Kistler WM, van Hemmen L (1999) Delayed reverberation through time windows as a key to cerebellar function. Biol Cybern 81(5–6):373–380PubMedCrossRefGoogle Scholar
  81. Lang EJ, Llinas RR, Sugihara I (2006) Isochrony in the olivocerebellar system underlies complex spike synchrony. J Physiol 573(Pt 1):277–9– author reply 281–2. doi:10.1113/jphysiol.2006.571101Google Scholar
  82. Latorre R, Aguirre C, Rabinowitch M, Varona P (2013) Transient dynamics and rhythm coordination of inferior olive spatio-temporal patterns. Front Neural Circuits 1–18. doi:10.3389/fncir.2013.00138/abstractGoogle Scholar
  83. Lefler Y, Torben-Nielsen B, Yarom Y (2013) Oscillatory activity, phase differences, and phase resetting in the inferior olivary nucleus. Front Syst Neurosci 1–9. doi:10.3389/fnsys.2013.00022/abstractGoogle Scholar
  84. Llinas RR, Yarom Y (1981) Properties and distribution of ionic conductances generating electroresponsiveness of mammalian inferior olivary neurones in vitro. J Physiol 315:569–584PubMedPubMedCentralCrossRefGoogle Scholar
  85. Llinas RR, BAKER R, Sotelo C (1974) Electrotonic coupling between neurons in cat inferior olive. J Neurophysiol 37(3):560–571PubMedGoogle Scholar
  86. Llinas RR, Walton K, Hillman DE, Sotelo C (1975) Inferior olive: its role in motor learing. Science (New York, NY) 190(4220):1230–1231. doi:10.1126/science.128123CrossRefGoogle Scholar
  87. Maex R, De Schutter E (1998) Synchronization of golgi and granule cell firing in a detailed network model of the cerebellar granule cell layer. J Neurophysiol 80(5):2521–2537PubMedGoogle Scholar
  88. Manor Y, Rinzel J, Segev I (1997) Low-amplitude oscillations in the inferior olive: a model based on electrical coupling of neurons with heterogeneous channel densities. J Neurophysiol 77:2736PubMedGoogle Scholar
  89. Marr D (1969) A theory of cerebellar cortex. J Physiol 202(2):437–470PubMedPubMedCentralCrossRefGoogle Scholar
  90. Marshall SP, Lang EJ (2004) Inferior olive oscillations gate transmission of motor cortical activity to the cerebellum. J Neurosci 24(50):11356–11367. doi:10.1523/JNEUROSCI.3907-04.2004PubMedCrossRefGoogle Scholar
  91. Mathy A, Ho SSN, Davie JT, Duguid IC, Clark BA, Häusser M (2009) Encoding of oscillations by axonal bursts in inferior olive neurons. Neuron 62(3):388–399. doi:10.1016/j.neuron.2009.03.023PubMedPubMedCentralCrossRefGoogle Scholar
  92. Mauk MD, Steinmetz JE, Thompson RF (1986) Classical conditioning using stimulation of the inferior olive as the unconditioned stimulus. Proc Natl Acad Sci U S A 83(14):5349–5353PubMedPubMedCentralCrossRefGoogle Scholar
  93. McCulloch WS, Pitts W (1943) A logical calculus of the ideas immanent in nervous activity. Bull Math BiophysGoogle Scholar
  94. Medina JF (2010) A recipe for bidirectional motor learning: using inhibition to cook plasticity in the vestibular nuclei. Neuron 68(4):607–609. doi:10.1016/j.neuron.2010.11.011PubMedPubMedCentralCrossRefGoogle Scholar
  95. Medina JF, Lisberger SG (2008) Links from complex spikes to local plasticity and motor learning in the cerebellum of awake-behaving monkeys. Nat Neurosci 11(10):1185–1192. doi:10.1038/nn.2197PubMedPubMedCentralCrossRefGoogle Scholar
  96. Mitchell SJ, Silver RA (2000) Glutamate spillover suppresses inhibition by activating presynaptic mGluRs. Nature 404(6777):498–502. doi:10.1038/35006649PubMedCrossRefGoogle Scholar
  97. Najac M, Raman IM (2015) Integration of Purkinje cell inhibition by cerebellar nucleo-olivary neurons. J Neurosci 35(2):544–549. doi:10.1523/JNEUROSCI.3583-14.2015PubMedPubMedCentralCrossRefGoogle Scholar
  98. Neymotin SA, Lee H, Park E, Fenton AA, Lytton WW (2011) Emergence of physiological oscillation frequencies in a computer model of neocortex. Front Comput Neurosci 5:19. doi:10.3389/fncom.2011.00019PubMedPubMedCentralCrossRefGoogle Scholar
  99. Ohyama T, Nores WL, Murphy M, Mauk MD (2003) What the cerebellum computes. Trends Neurosci 26(4):222–227PubMedCrossRefGoogle Scholar
  100. Optican LM, Robinson DA (1980) Cerebellar-dependent adaptive control of primate saccadic system. J Neurophysiol 44(6):1058–1076PubMedGoogle Scholar
  101. Ostojic S, Szapiro G, Schwartz E, Barbour B, Brunel N, Hakim V (2015) Neuronal morphology generates high-frequency firing resonance. J Neurosci 35(18):7056–7068. doi:10.1523/JNEUROSCI.3924-14.2015PubMedCrossRefGoogle Scholar
  102. Pellionisz A, Llinas RR (1977) A computer model of cerebellar Purkinje cells. Neuroscience 2(1):37–48PubMedCrossRefGoogle Scholar
  103. Pellionisz A, Llinas RR, Perkel DH (1977) A computer model of the cerebellar cortex of the frog. Neuroscience 2(1):19–35PubMedCrossRefGoogle Scholar
  104. Person AL, Raman IM (2012) Purkinje neuron synchrony elicits time-locked spiking in the cerebellar nuclei. Nature 481(7382):502–505. doi:10.1038/nature10732CrossRefGoogle Scholar
  105. Phoka E, Cuntz H, Roth A, Häusser M (2010) A new approach for determining phase response curves reveals that Purkinje cells can act as perfect integrators. PLoS Comput Biol 6(4):e1000768. doi:10.1371/journal.pcbi.1000768PubMedPubMedCentralCrossRefGoogle Scholar
  106. Porrill J, Dean P (2007) Cerebellar motor learning: when is cortical plasticity not enough? PLoS Comput Biol 3(10):e197. doi:10.1371/journal.pcbi.0030197PubMedCentralCrossRefGoogle Scholar
  107. Prsa M, Dash S, Catz N, Dicke PW, Thier P (2009) Characteristics of responses of Golgi cells and mossy fibers to eye saccades and saccadic adaptation recorded from the posterior vermis of the cerebellum. J Neurosci 29(1):250–262. doi:10.1523/JNEUROSCI.4791-08.2009PubMedCrossRefGoogle Scholar
  108. Rasmussen A, Jirenhed DA, Zucca R, Johansson F, Svensson P, Hesslow G (2013) Number of spikes in climbing fibers determines the direction of cerebellar learning. J Neurosci 33(33):13436–13440. doi:10.1523/JNEUROSCI.1527-13.2013PubMedCrossRefGoogle Scholar
  109. Rosenblatt F (1957) The perceptron – a perceiving and recognizing automaton. Report 85-460-1. Cornell Aeronautical LaboratoryGoogle Scholar
  110. Rosenblatt F (1958) The Perceptron–a perceiving and recognizing automaton. Cornell Aeronautical Laboratory, Report 85-460-1Google Scholar
  111. Ruigrok TJ, Voogd J (1995) Cerebellar influence on olivary excitability in the cat. Eur J Neurosci 7(4):679–693PubMedCrossRefGoogle Scholar
  112. Sauerbrei BA, Lubenov EV, Siapas AG (2015) Structured variability in Purkinje cell activity during locomotion. Neuron 87(4):840–852. doi:10.1016/j.neuron.2015.08.003PubMedPubMedCentralCrossRefGoogle Scholar
  113. Schmahmann J, Caplan D (2006) Cognition, emotion and the cerebellum. Brain 129(Pt 2):290–292. doi:10.1093/brain/awh729PubMedGoogle Scholar
  114. Schonewille M, Hoebeek FE, Belmeguenai A, Koekkoek SK, Houtman SH, Boele HJ et al (2010) Purkinje cell-specific knockout of the protein phosphatase PP2B impairs potentiation and cerebellar motor learning. Neuron 67(4):618–628. doi:10.1016/j.neuron.2010.07.009PubMedPubMedCentralCrossRefGoogle Scholar
  115. Schonewille M, Gao Z, Boele H-J, Vinueza Veloz MF, Amerika WE, Šimek AAM et al (2011) Reevaluating the role of LTD in cerebellar motor learning. Neuron 70(1):43–50. doi:10.1016/j.neuron.2011.02.044PubMedPubMedCentralCrossRefGoogle Scholar
  116. Schweighofer N, Doya K, Kawato M (1999) Electrophysiological properties of inferior olive neurons: a compartmental model. J Neurophysiol 82(2):804–817PubMedGoogle Scholar
  117. Schweighofer N, Doya K, Fukai H, Chiron JV, Furukawa T, Kawato M (2004) Chaos may enhance information transmission in the inferior olive. Proc Natl Acad Sci U S A 101(13):4655–4660. doi:10.1073/pnas.0305966101PubMedPubMedCentralCrossRefGoogle Scholar
  118. Shin SL, De Schutter E (2006) Dynamic synchronization of Purkinje cell simple spikes. J Neurophysiol 96(6):3485–3491. doi:10.1152/jn.00570.2006PubMedCrossRefGoogle Scholar
  119. Shin SL, Hoebeek FE, Schonewille M, De Zeeuw CI, Aertsen A, De Schutter E (2007) Regular patterns in cerebellar Purkinje cell simple spike trains. PLoS One 2(5):e485PubMedPubMedCentralCrossRefGoogle Scholar
  120. Shinoda Y, Sugihara I, Wu HS, Sugiuchi Y (2000) The entire trajectory of single climbing and mossy fibers in the cerebellar nuclei and cortex. Prog Brain Res 124:173–186. doi:10.1016/S0079-6123(00)24015-6. ElsevierPubMedCrossRefGoogle Scholar
  121. Soetedjo R, Kojima Y, Fuchs AF (2008) Complex spike activity in the oculomotor vermis of the cerebellum: a vectorial error signal for saccade motor learning? J Neurophysiol 100(4):1949–1966. doi:10.1152/jn.90526.2008PubMedPubMedCentralCrossRefGoogle Scholar
  122. Solinas S, Forti L, Cesana E, Mapelli J, De Schutter E, D’Angelo E (2007) Computational reconstruction of pacemaking and intrinsic electroresponsiveness in cerebellar Golgi cells. Front Cell Neurosci 1:2. doi:10.3389/neuro.03.002.2007PubMedPubMedCentralCrossRefGoogle Scholar
  123. Solinas S, Nieus T, D’Angelo E (2010) A realistic large-scale model of the cerebellum granular layer predicts circuit spatio-temporal filtering properties. Front Cell Neurosci 4:12. doi:10.3389/fncel.2010.00012PubMedPubMedCentralGoogle Scholar
  124. Spencer RMC, Ivry RB (2009) Sequence learning is preserved in individuals with cerebellar degeneration when the movements are directly cued. J Cogn Neurosci 21(7):1302–1310. doi:10.1162/jocn.2009.21102PubMedPubMedCentralCrossRefGoogle Scholar
  125. Steuber V, Mittmann W, Hoebeek FE, Silver RA, De Zeeuw CI, Häusser M, de Schutter E (2007) Cerebellar LTD and pattern recognition by Purkinje cells. Neuron 54(1):121–136. doi:10.1016/j.neuron.2007.03.015PubMedPubMedCentralCrossRefGoogle Scholar
  126. Steuber V, Schultheiss NW, Silver RA, Schutter E, Jaeger D (2010) Determinants of synaptic integration and heterogeneity in rebound firing explored with data-driven models of deep cerebellar nucleus cells. J Comput Neurosci 30(3):633–658. doi:10.1007/s10827-010-0282-zPubMedPubMedCentralCrossRefGoogle Scholar
  127. Sugihara I, Wu HS, Shinoda Y (2001) The entire trajectories of single olivocerebellar axons in the cerebellar cortex and their contribution to cerebellar compartmentalization. J Neurosci 21(19):7715–7723PubMedGoogle Scholar
  128. Ten Brinke MM, Boele H-J, Spanke JK, Potters JW, Kornysheva K, Wulff P et al (2015) Evolving models of Pavlovian conditioning: cerebellar cortical dynamics in awake behaving mice. CellReports 13(9):1977–1988Google Scholar
  129. Thier P, Dicke PW, Haas R, Barash S (2000) Encoding of movement time by populations of cerebellar Purkinje cells. Nature 405(6782):72–76. doi:10.1038/35011062PubMedCrossRefGoogle Scholar
  130. Torben-Nielsen B, Segev I, Yarom Y (2012) The generation of phase differences in a network model of the inferior olive subthreshold oscillations. PLoS Comput Biol 1–10. doi:10.1371/journal.pcbi.1002580Google Scholar
  131. Uusisaari M, De Schutter E (2011) The mysterious microcircuitry of the cerebellar nuclei. J Physiol 589(14):3441–3457. doi:10.1113/jphysiol.2010.201582PubMedPubMedCentralCrossRefGoogle Scholar
  132. Uusisaari MY, Knöpfel T (2012) Diversity of neuronal elements and circuitry in the cerebellar nuclei. Cerebellum (London, England) 11(2):420–421. doi:10.1007/s12311-011-0350-6CrossRefGoogle Scholar
  133. van der Giessen RS (2007) Role of electrotonic coupling in the olivocerebelar system. Erasmus MC, RotterdamGoogle Scholar
  134. Velarde MG, Nekorkin VI, Kazantsev VB, Makarenko VI, Llinas RR (2002) Modeling inferior olive neuron dynamics. Neural Netw 15(1):5–10PubMedCrossRefGoogle Scholar
  135. Vervaeke K, Nusser Z, Silver RA (2010) Rapid desynchronization of an electrically coupled interneuron network with sparse excitatory synaptic input. Neuron 67(3):435–451. doi:10.1016/j.neuron.2010.06.028PubMedPubMedCentralCrossRefGoogle Scholar
  136. Vervaeke K, Lorincz A, Nusser Z, Silver RA (2012) Gap junctions compensate for sublinear dendritic integration in an inhibitory network. Science (New York, NY) 335(6076):1624–1628. doi:10.1126/science.1215101CrossRefGoogle Scholar
  137. Voogd J, Pardoe J, Ruigrok TJ, Apps R (2003) The distribution of climbing and mossy fiber collateral branches from the copula pyramidis and the paramedian lobule: congruence of climbing fiber cortical zones and the pattern of zebrin banding within the rat cerebellum. J Neurosci 23(11):4645–4656PubMedGoogle Scholar
  138. Voogd J, De Zeeuw CI, Schraa-Tam CKL, Geest JN (2010) Visuomotor cerebellum in human and nonhuman primates. Cerebellum (London, England) 11(2):392–410. doi:10.1007/s12311-010-0204-7CrossRefGoogle Scholar
  139. Vos BP, Volny-Luraghi A, De Schutter E (1999) Cerebellar Golgi cells in the rat: receptive fields and timing of responses to facial stimulation. Eur J Neurosci 11(8):2621–2634PubMedCrossRefGoogle Scholar
  140. Warnaar P, Couto J, Negrello M, Junker M, Smilgin A, Ignashchenkova A et al (2015) Duration of Purkinje cell complex spikes increases with their firing frequency. Front Cell Neurosci 9:1–30. doi:10.3389/fncel.2015.00122CrossRefGoogle Scholar
  141. Welsh JP, Lang EJ, Suglhara I, Llinas RR (1995) Dynamic organization of motor control within the olivocerebellar system. Nature 374(6521):453–457. doi:10.1038/374453a0PubMedCrossRefGoogle Scholar
  142. Witter L, Canto CB, Hoogland TM, De Gruijl JR, De Zeeuw CI (2013) Strength and timing of motor responses mediated by rebound firing in the cerebellar nuclei after Purkinje cell activation. Front Neural Circuits 7:133. doi:10.3389/fncir.2013.00133PubMedPubMedCentralCrossRefGoogle Scholar
  143. Wolpert DM, Kawato M (1998) Multiple paired forward and inverse models for motor control. Neural Netw 11(7–8):1317–1329PubMedCrossRefGoogle Scholar
  144. Wulff P, Schonewille M, Renzi M, Viltono L, Sassoè-Pognetto M, Badura A et al (2009) Synaptic inhibition of Purkinje cells mediates consolidation of vestibulo-cerebellar motor learning. Nat Neurosci 12(8):1042–1049. doi:10.1038/nn.2348PubMedPubMedCentralCrossRefGoogle Scholar
  145. Yamazaki T, Tanaka S (2007) The cerebellum as a liquid state machine. Neural Netw 20(3):290–297. doi:10.1016/j.neunet.2007.04.004PubMedCrossRefGoogle Scholar
  146. Zhou H, Lin Z, Voges K, Ju C, Gao Z, Bosman LW et al (2014) Cerebellar modules operate at different frequencies. eLife 3:e02536. doi:10.7554/eLife.02536PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Erasmus Medical CenterRotterdamThe Netherlands
  2. 2.Computational Neuroscience UnitOkinawa Institute of Science and TechnologyKunigam, OkinawaJapan

Personalised recommendations