Encyclopedia of Algorithms

2016 Edition
| Editors: Ming-Yang Kao

Multilinear Monomial Detection

  • Ioannis Koutis
Reference work entry
DOI: https://doi.org/10.1007/978-1-4939-2864-4_784

Years and Authors of Summarized Original Work

  • 2008; Koutis

  • 2009; Williams

Problem Definition

The topic of this article is the parameterized multilinear monomial detection problem:

k -MlD:

Given an arithmetic circuit C representing a polynomial P(X) over \(\mathbb{Z}_{+}\)

Keywords

Algebraic methods Color coding Parameterized algorithms Subgraph containment 
This is a preview of subscription content, log in to check access.

Recommended Reading

  1. 1.
    Alon N, Gutner S (2009) Balanced hashing, color coding and approximate counting. In: Chen J, Fomin FV (eds) Parameterized and exact computation. Springer, Berlin/Heidelberg, pp 1–16CrossRefGoogle Scholar
  2. 2.
    Alon N, Yuster R, Zwick U (1995) Color coding. J ACM 42(4):844–856MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Björklund A (2010) Determinant sums for undirected hamiltonicity. In: 51th annual IEEE symposium on foundations of computer science, FOCS 2010, Las Vegas, 23–26 Oct 2010, pp 173–182Google Scholar
  4. 4.
    Björklund A (2010) Exact covers via determinants. In: 27th international symposium on theoretical aspects of computer science, STACS, Nancy, pp 95–106Google Scholar
  5. 5.
    Björklund A, Kaski P, Kowalik L (2015) Constrained multilinear detection and generalized graph motifs. Algorithmica 1–21. doi:10.1007/s00453-015-9981-1Google Scholar
  6. 6.
    Blin G, Bonizzoni P, Dondi R, Sikora F (2012) On the parameterized complexity of the repetition free longest common subsequence problem. Inf Process Lett 112(7):272–276MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Cygan M, Nederlof J, Pilipczuk M, Pilipczuk M, van Rooij JMM, Wojtaszczyk JO (2011) Solving connectivity problems parameterized by treewidth in single exponential time. In: IEEE 52nd annual symposium on foundations of computer science, FOCS, Palm Springs, pp 150–159Google Scholar
  8. 8.
    Downey RG, Fellows MR (2013) Fundamentals of parameterized complexity. Texts in computer science. Springer. doi:10.1007/978-1-4471-5559-1MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Fomin FV, Lokshtanov D, Raman V, Saurabh S, Rao BVR (2012) Faster algorithms for finding and counting subgraphs. J Comput Syst Sci 78(3):698–706. doi:10.1016/j.jcss.2011.10.001MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Fomin FV, Lokshtanov D, Saurabh S (2014) Efficient computation of representative sets with applications in parameterized and exact algorithms. In: Proceedings of the twenty-fifth annual ACM-SIAM symposium on discrete algorithms. SIAM, Philadelphia, pp 142–151CrossRefGoogle Scholar
  11. 11.
    Koutis I (2008) Faster algebraic algorithms for path and packing problems. In: Proceedings of the 35th international colloquium on automata, languages and programming, Part I. Springer, Berlin/Heidelberg, pp 575–586CrossRefGoogle Scholar
  12. 12.
    Koutis I (2012) Constrained multilinear detection for faster functional motif discovery. Inf Process Lett 112(22):889–892MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Koutis I, Williams R (2009) Limits and applications of group algebras for parameterized problems. In: Proceedings of the 36th international colloquium on automata, languages and programming: Part I (ICALP ’09). Springer, Berlin/Heidelberg, pp 653–664CrossRefGoogle Scholar
  14. 14.
    Motwani R, Raghavan P (1997) Randomized algorithms. In: Tucker AB (ed) The computer science and engineering handbook. CRC Press, Boca Raton, pp 141–161Google Scholar
  15. 15.
    Williams R (2009) Finding paths of length k in \(O^{{\ast}}(2^{k})\) time. Inf Process Lett 109:315–318zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Computer Science DepartmentUniversity of Puerto Rico-Rio PiedrasSan JuanUSA