Skip to main content

Delaunay Triangulation and Randomized Constructions

  • Reference work entry
  • First Online:
Encyclopedia of Algorithms
  • 111 Accesses

Years and Authors of Summarized Original Work

  • 1989; Clarkson, Shor

  • 1993; Seidel

  • 2002; Devillers

  • 2003;Amenta, Choi, Rote

Problem Definition

The Delaunay triangulation and the Voronoi diagram are two classic geometric structures in the field of computational geometry. Their success can perhaps be attributed to two main reasons: Firstly, there exist practical, efficient algorithms to construct them; and secondly, they have an enormous number of useful applications ranging from meshing and 3D-reconstruction to interpolation.

Given a set S of n sites in some space \(\mathbb{E}\), we define the Voronoi regionV S (p) of p ∈ S to be the set of points in \(\mathbb{E}\) whose nearest neighbor in S is p (for some distance δ):

$$\displaystyle\begin{array}{rcl} V (p) = \left \{x\,\in \,\mathbb{E},\forall q\,\in \,S\setminus \{p\}\delta (x,p) <\delta (x,q)\right \}.& & {}\\ \end{array}$$

It is easily seen that these regions form a partition of \(\mathbb{E}\) into convex regions which we refer to as cells...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Recommended Reading

  1. Amenta N, Choi S, Rote G (2003) Incremental constructions con BRIO. In: Proceedings of the 19th annual symposium on computational geometry, San Diego, pp 211–219. doi:10.1145/777792.777824, http://page.inf.fu-berlin.de/ rote/Papers/pdf/Incremental+constructions+con+BRIO.pdf

  2. Amenta N, Attali D, Devillers O (2012) A tight bound for the Delaunay triangulation of points on a polyhedron. Discret Comput Geom 48:19–38. doi:10.1007/s00454-012-9415-7, http://hal.inria.fr/hal-00784900

  3. Attali D, Boissonnat JD, Lieutier A (2003) Complexity of the Delaunay triangulation of points on surfaces: the smooth case. In: Proceedings of the 19th annual symposium on computational geometry, San Diego, pp 201–210. doi:10.1145/777792.777823, http://dl.acm.org/citation.cfm?id=777823

  4. Aurenhammer F, Klein R (2000) Voronoi diagrams. In: Sack JR, Urrutia J (eds) Handbook of computational geometry. Elsevier/North-Holland, Amsterdam, pp 201–290. ftp://ftp.cis.upenn.edu/pub/cis610/public_html/ak-vd-00.ps

    Google Scholar 

  5. Boissonnat JD, Teillaud M (1986) A hierarchical representation of objects: the Delaunay tree. In: Proceedings of the 2nd annual symposium computational geometry, Yorktown Heights, pp 260–268. http://dl.acm.org/citation.cfm?id=10543

  6. Clarkson KL, Shor PW (1989) Applications of random sampling in computational geometry, II. Discret Comput Geom 4:387–421. doi:10.1007/BF02187740, http://www.springerlink.com/content/b9n24vr730825p71/

  7. Devillers O (2002) The Delaunay hierarchy. Int J Found Comput Sci 13:163–180. doi:10.1142/S0129054102001035, http://hal.inria.fr/inria-00166711

  8. Devillers O (2012) Delaunay triangulations, theory vs practice. In: Abstracts 28th European workshop on computational geometry, Assisi, pp 1–4. http://hal.inria.fr/hal-00850561, invited talk

  9. Dwyer R (1993) The expected number of k-faces of a Voronoi diagram. Int J Comput Math 26(5):13–21. doi:10.1016/0898-1221(93)90068-7, http://www.sciencedirect.com/science/article/pii/0898122193900687

  10. Fortune SJ (1987) A sweepline algorithm for Voronoi diagrams. Algorithmica 2:153–174. doi:10.1007/BF01840357, http://www.springerlink.com/content/n88186tl165168rw/

  11. Frederick CO, Wong YC, Edge FW (1970) Two-dimensional automatic mesh generation for structural analysis. Internat J Numer Methods Eng 2:133–144. doi:10.1002/nme.1620020112/abstract

    Article  Google Scholar 

  12. Golin MJ, Na HS (2002) The probabilistic complexity of the Voronoi diagram of points on a polyhedron. In: Proceedings of the 18th annual symposium on computational geometry. Barcelona http://www.cse.ust.hk/ golin/pubs/SCG_02.pdf

  13. Lee DT (1978) Proximity and reachability in the plane. PhD thesis, Coordinated Science Lab., University of Illinois, Urbana. http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA069764

    Google Scholar 

  14. Okabe A, Boots B, Sugihara K (1992) Spatial tessellations: concepts and applications of Voronoi diagrams. Wiley, Chichester

    MATH  Google Scholar 

  15. Seidel R (1993) Backwards analysis of randomized geometric algorithms. In: Pach J (ed) New trends in discrete and computational geometry, algorithms and combinatorics, vol 10. Springer, pp 37–68. http://ftp.icsi.berkeley.edu/ftp/pub/techreports/1992/tr-92-014.ps.gz

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Devillers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this entry

Cite this entry

Devillers, O. (2016). Delaunay Triangulation and Randomized Constructions. In: Kao, MY. (eds) Encyclopedia of Algorithms. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2864-4_711

Download citation

Publish with us

Policies and ethics