Encyclopedia of Algorithms

2016 Edition
| Editors: Ming-Yang Kao

Locally Testable Codes

  • Prahladh HarshaEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-1-4939-2864-4_707

Years and Authors of Summarized Original Work

  • 1990; Blum, Luby, Rubinfeld

  • 2002; Goldreich, Sudan

Problem Definition

Locally testable codes (LTC) are error-correcting codes that support algorithms which can distinguish valid codewords from words that are “far” from all codewords by probing a given word only at a sublinear (typically constant) number of locations. LTCs are useful in the following scenario. Suppose data is transmitted by encoding it using a LTC. Then, one could check if the received data is nearly uncorrupted or has been considerably corrupted by making very few probes into the received data.

An error-correcting code \(\mathcal{C} :\{ 0,1\}^{k} \rightarrow \{ 0,1\}^{n}\)


Error-correcting codes Locally checkable PCPs Property testing 
This is a preview of subscription content, log in to check access.

Recommended Reading

  1. 1.
    Arora S (1994) Probabilistic checking of proofs and the hardness of approximation problems. PhD thesis, University of California, BerkeleyGoogle Scholar
  2. 2.
    Babai L, Fortnow L, Levin LA, Szegedy M (1991) Checking computations in polylogarithmic time. In: Proceedings of the 23rd ACM symposium on theory of computing (STOC), pp 21–31. doi:10.1145/103418.103428Google Scholar
  3. 3.
    Bellare M, Coppersmith D, Håstad J, Kiwi MA, Sudan M (1996) Linearity testing in characteristic two. IEEE Trans Inf Theory 42(6):1781–1795. doi:10.1109/18.556674, (Preliminary version in 36th FOCS, 1995)Google Scholar
  4. 4.
    Ben-Sasson E (2010) Limitation on the rate of families of locally testable codes. In: [12], pp 13–31. doi:10.1007/978-3-642-16367-8_3Google Scholar
  5. 5.
    Ben-Sasson E, Sudan M (2008) Short PCPs with polylog query complexity. SIAM J Comput 38(2):551–607. doi:10.1137/050646445, (Preliminary version in 37th STOC, 2005)Google Scholar
  6. 6.
    Ben-Sasson E, Harsha P, Raskhodnikova S (2005) Some 3CNF properties are hard to test. SIAM J Comput 35(1):1–21. doi:10.1137/S0097539704445445, (Preliminary version in 35th STOC, 2003)Google Scholar
  7. 7.
    Ben-Sasson E, Goldreich O, Harsha P, Sudan M, Vadhan S (2006) Robust PCPs of proximity, shorter PCPs and applications to coding. SIAM J Comput 36(4):889–974. doi:10.1137/S0097539705446810, (Preliminary version in 36th STOC, 2004)Google Scholar
  8. 8.
    Blum M, Luby M, Rubinfeld R (1993) Self-testing/correcting with applications to numerical problems. J Comput Syst Sci 47(3):549–595. doi:10.1016/0022-0000(93)90044-W, (Preliminary version in 22nd STOC, 1990)Google Scholar
  9. 9.
    Dinur I (2007) The PCP theorem by gap amplification. J ACM 54(3):12. doi:10.1145/1236457.1236459, (Preliminary version in 38th STOC, 2006)Google Scholar
  10. 10.
    Friedl K, Sudan M (1995) Some improvements to total degree tests. In: Proceedings of the 3rd Israel symposium on theoretical and computing systems, pp 190–198. Corrected version available online at http://theory.lcs.mit.edu/~madhu/papers/friedl.ps
  11. 11.
    Gemmell P, Lipton RJ, Rubinfeld R, Sudan M, Wigderson A (1991) Self-testing/correcting for polynomials and for approximate functions. In: Proceedings of the 23rd ACM symposium on theory of computing (STOC), pp 32–42. doi:10.1145/103418.103429Google Scholar
  12. 12.
    Goldreich O (ed) (2010) Property testing (Current research and surverys). Lecture notes in computer science, vol 6390. Springer, BerlinGoogle Scholar
  13. 13.
    Goldreich O (2010) Short locally testable codes and proofs: a survey in two parts. In: [12], pp 65–104. doi:10.1007/978-3-642-16367-8_6Google Scholar
  14. 14.
    Goldreich O, Sudan M (2006) Locally testable codes and PCPs of almost linear length. J ACM 53(4):558–655. doi:10.1145/1162349.1162351, (Preliminary Verison in 43rd FOCS, 2002)Google Scholar
  15. 15.
    Kaufman T, Litsyn S (2005) Almost orthogonal linear codes are locally testable. In: Proceedings of the 46th IEEE symposium on foundations of computer science (FOCS), pp 317–326. doi:10.1109/SFCS.2005.16Google Scholar
  16. 16.
    Meir O (2009) Combinatorial construction of locally testable codes. SIAM J Comput 39(2):491–544. doi:10.1137/080729967, (Preliminary version in 40th STOC, 2008)Google Scholar
  17. 17.
    Rubinfeld R, Sudan M (1996) Robust characterizations of polynomials with applications to program testing. SIAM J Comput 25(2):252–271. doi:10.1137/S0097539793255151, (Preliminary version in 23rd STOC, 1991 and 3rd SODA, 1992)Google Scholar
  18. 18.
    Spielman DA (1995) Computationally efficient error-correcting codes and holographic proofs. PhD thesis, Massachusetts Institute of Technology. http://www.cs.yale.edu/homes/spielman/Research/thesis.html
  19. 19.
    Trevisan L (2004) Some applications of coding theory in computational complexity. Quaderni di Matematica 13:347–424. cs/0409044Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Tata Institute of Fundamental ResearchMumbaiIndia