Encyclopedia of Algorithms

2016 Edition
| Editors: Ming-Yang Kao

Huffman Coding

  • Alistair MoffatEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-1-4939-2864-4_633

Years and Authors of Summarized Original Work

  • 1952; Huffman

  • 1976; van Leeuwen

  • 1995; Moffat, Katajainen

Problem Definition

A sequence of n positive weights or frequencies is given, \(\langle w_{i} > 0\mid 0 \leq i < n\rangle\)

Keywords

Compression Huffman code Minimum-redundancy code 
This is a preview of subscription content, log in to check access.

Recommended Reading

  1. 1.
    Cormack GV, Horspool RN (1984) Algorithms for adaptive Huffman codes. Inf Process Lett 18(3):159–165MathSciNetCrossRefGoogle Scholar
  2. 2.
    Gallager RG (1978) Variations on a theme by Huffman. IEEE Trans Inf Theory IT-24(6):668–674MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Huffman DA (1952) A method for the construction of minimum-redundancy codes. Proc Inst Radio Eng 40(9):1098–1101zbMATHGoogle Scholar
  4. 4.
    Knuth DE (1985) Dynamic Huffman coding. J Algorithms 6(2):163–180MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Moffat A, Katajainen J (1995) In-place calculation of minimum-redundancy codes. In: Proceedings of the Workshop on Algorithms and Data Structures, Kingston, pp 393–402Google Scholar
  6. 6.
    Moffat A, Turpin A (1997) On the implementation of minimum-redundancy prefix codes. IEEE Trans Commun 45(10):1200–1207CrossRefGoogle Scholar
  7. 7.
    Stix G (1991) Profile: information theorist David A. Huffman. Sci Am 265(3):54–58. Reproduced at http://www.huffmancoding.com/my-uncle/david-bio. Accessed 15 July 2014
  8. 8.
    Turpin A, Moffat A (2000) Housekeeping for prefix coding. IEEE Trans Commun 48(4):622–628zbMATHCrossRefGoogle Scholar
  9. 9.
    Turpin A, Moffat A (2001) On-line adaptive canonical prefix coding with bounded compression loss. IEEE Trans Inf Theory 47(1):88–98MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    van Leeuwen J (1976) On the construction of Huffman trees. In: Proceedings of the International Conference on Automata, Languages, and Programming, Edinburgh University, Edinburgh, pp 382–410Google Scholar
  11. 11.
    Vitter JS (1987) Design and analysis of dynamic Huffman codes. J ACM 34(4):825–845MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Computing and Information Systems, The University of MelbourneMelbourneAustralia