Skip to main content

Parity Games

  • Reference work entry
  • First Online:
  • 92 Accesses

Years and Authors of Summarized Original Work

  • 1991; Emerson, Jutla

  • 1991; Mostowski

Problem Definition

A parity game is an infinite duration game, played by players odd and even, denoted by \(\square \) and \(\diamond \), respectively on a directed, finite graph. Throughout this note, we let \(\bigcirc \) denote an arbitrary player and we write \(\bar{\bigcirc }\) for \(\bigcirc \)’s opponent; i.e. \(\bar{\diamond } = \square \) and \(\bar{\square } = \diamond \).

Definition 1 (Parity game)

A parity game is a tuple \((V,E,\varOmega ,(V _{\diamond },V _{\square }))\), where

  • V is a set of vertices, partitioned in a set \(V _{\diamond }\) of vertices owned by player \(\diamond \), and a set of vertices \(V _{\square }\) owned by player \(\square \),

  • \(E \subseteq V \times V\) is a total edge relation,

  • \(\varOmega :V \rightarrow \mathbb{N}\) is a priority function that assigns priorities to vertices.

The graph (V, E) underlying a parity game is often referred to as the arena. Parity games...

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   1,599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   1,999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Recommended Reading

  1. Emerson E, Jutla C (1991) Tree automata, mu-calculus and determinacy. In: FOCS’91. IEEE Computer Society, Washington, DC, pp 368–377. 10.1109/SFCS.1991.185392

    Google Scholar 

  2. Emerson E, Jutla C, Sistla A (2001) On model checking for the μ-calculus and its fragments. Theor Comput Sci 258(1–2):491–522. 10.1016/S0304-3975(00)00034-7

    Article  MathSciNet  MATH  Google Scholar 

  3. Friedmann O (2011) An exponential lower bound for the latest deterministic strategy iteration algorithms. Log Methods Comput Sci 7(3)

    Google Scholar 

  4. Friedmann O (2013) A superpolynomial lower bound for strategy iteration based on snare memorization. Discret Appl Math 161(10–11):1317–1337

    Article  MathSciNet  MATH  Google Scholar 

  5. Jurdziński M (1998) Deciding the winner in parity games is in UP \(\cap \) co-UP. IPL 68(3):119–124. 10.1016/S0020-0190(98)00150-1

    Article  MathSciNet  Google Scholar 

  6. Jurdziński M (2000) Small progress measures for solving parity games. In: STACS’00. LNCS, vol 1770. Springer, pp 290–301. 10.1007/3-540-46541-3_24

    Google Scholar 

  7. Jurdziński M, Paterson M, Zwick U (2006) A deterministic subexponential algorithm for solving parity games. In: SODA’06. ACM/SIAM, pp 117–123. 10.1145/1109557.1109571

    Google Scholar 

  8. King V, Kupferman O, Vardi MY (2001) On the complexity of parity word automata. In: FOSSACS. LNCS, vol 2030. Springer, pp 276–286. 10.1007/3-540-45315-6_18

    Google Scholar 

  9. Martin D (1975) Borel determinacy. Ann Math 102:363–371. 10.2307/1971035

    Article  MathSciNet  MATH  Google Scholar 

  10. McNaughton R (1993) Infinite games played on finite graphs. APAL 65(2):149–184. 10.1016/0168-0072(93)90036-D

    MathSciNet  MATH  Google Scholar 

  11. Mostowski A (1991) Hierarchies of weak automata and weak monadic formulas. Theor Comput Sci 83(2):323–335. 10.1016/0304-3975(91)90283-8

    Article  MathSciNet  MATH  Google Scholar 

  12. Niwinski D (1997) Fixed point characterization of infinite behavior of finite-state systems. Theor Comput Sci 189(1–2):1–69. 10.1016/S0304-3975(97)00039-X

    Article  MathSciNet  MATH  Google Scholar 

  13. Schewe S (2007) Solving parity games in big steps. In: FSTTCS’07. LNCS, vol 4855. Springer, pp 449–460. 10.1007/978-3-540-77050-3

    Google Scholar 

  14. Vöge J, Jurdzinski M (2000) A discrete strategy improvement algorithm for solving parity games. In: Emerson EA, Sistla AP (eds) CAV. LNCS, vol 1855. Springer, Heidelberg, pp 202–215

    Google Scholar 

  15. Zielonka W (1998) Infinite games on finitely coloured graphs with applications to automata on infinite trees. TCS 200(1–2):135–183. 10.1016/S0304-3975(98)00009-7

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim A. C. Willemse .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this entry

Cite this entry

Willemse, T.A.C., Gazda, M. (2016). Parity Games. In: Kao, MY. (eds) Encyclopedia of Algorithms. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2864-4_591

Download citation

Publish with us

Policies and ethics