Encyclopedia of Algorithms

2016 Edition
| Editors: Ming-Yang Kao

Matching in Dynamic Graphs

  • Surender BaswanaEmail author
  • Manoj Gupta
  • Sandeep Sen
Reference work entry
DOI: https://doi.org/10.1007/978-1-4939-2864-4_567

Years and Authors of Summarized Original Work

  • 2011; Baswana, Gupta, Sen

Problem Definition

Let G = (V, E) be an undirected graph on n = | V | vertices and m = | E | edges. A matching in G is a set of edges \(\mathcal{M}\subseteq E\)


Dynamic graph Matching Maximum matching Maximal matching Randomized algorithms 
This is a preview of subscription content, log in to check access.

Recommended Reading

  1. 1.
    Anand A, Baswana S, Gupta M, Sen S (2012) Maintaining approximate maximum weighted matching in fully dynamic graphs. In: FSTTCS, Hyderabad, pp 257–266Google Scholar
  2. 2.
    Gupta M, Peng R (2013) Fully dynamic (1+e)-approximate matchings. In: FOCS, Berkeley, pp 548–557Google Scholar
  3. 3.
    Ivkovic Z, Lloyd EL (1994) Fully dynamic maintenance of vertex cover. In: WG ’93: proceedings of the 19th international workshop on graph-theoretic concepts in computer science, Utrecht. Springer, London, pp 99–111CrossRefGoogle Scholar
  4. 4.
    Lovasz L, Plummer M (1986) Matching theory. AMS Chelsea Publishing/North-Holland, Amsterdam/ New YorkzbMATHGoogle Scholar
  5. 5.
    Micali S, Vazirani VV (1980) An \(O(\sqrt{(\vert V \vert )}\vert E\vert )\) algorithm for finding maximum matching in general graphs. In: FOCS, Syracuse, pp 17–27Google Scholar
  6. 6.
    Neiman O, Solomon S (2013) Simple deterministic algorithms for fully dynamic maximal matching. In: STOC, Palo Alto, pp 745–754zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Computer Science and EngineeringIndian Institute of Technology (IIT)KanpurIndia
  2. 2.Indian Institute of Technology (IIT) DelhiHauz Khas, New DelhiIndia