Skip to main content

Hydrothermal Conversion of Biomass

  • Living reference work entry
  • First Online:
Book cover Encyclopedia of Sustainability Science and Technology
  • 424 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Bibliography

  1. Vogel F (2009) Catalytic conversion of high-moisture biomass to synthetic natural gas in supercritical water. In: Crabtree R (Ed) Heterogeneous catalysis. Handbook of green chemistry, vol 2. Wiley-VCH, Weinheim, pp 281–324 (Paul Anastas (Series Editor))

    Google Scholar 

  2. Lemmon EW, McLinden MO, Friend DG (2014) Thermophysical properties of fluid systems. In: Linstrom PJ, Mallard WG (Eds) NIST chemistry WebBook. NIST Standard Reference Database Number 69. National Institute of Standards and Technology, Gaithersburg. http://webbook.nist.gov. Retrieved: 28 Sept 2014

  3. Grigull U (1983) Dielektrizitätskonstante und Ionenprodukt von Wasser und Wasserdampf. Brennstoff-Wärme-Kraft 35(6)

    Google Scholar 

  4. Kruse A, Funke A, Titirici MM (2013) Hydrothermal conversion of biomass to fuels and energetic materials. Curr Opinion Chem Biol 17:515–521

    Article  CAS  Google Scholar 

  5. Wagner W, Pruß A (2002) The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use. J Phys Chem Ref Data 31:387–535

    Article  CAS  Google Scholar 

  6. http://www.iapws.org/relguide/IF97-Rev.html. Retrieved: 28 Sept 2014

  7. Palmer DA, Fernández-Prini R, Harvey AH (eds) (2004) Aqueous systems at elevated temperatures and pressures. Elsevier, Amsterdam

    Google Scholar 

  8. Pilz S (1999) Simulation of the thermodynamic behavior of the pure components water, oxygen, nitrogen and carbon dioxide and of their mixtures for pressures up to 300 bar and temperatures up to 600 °C. In: VDI-GVC high pressure chemical engineering meeting, Karlsruhe, 3–5 Mar 1999

    Google Scholar 

  9. Valyashko VM (2008) Phase Equilibria in binary and ternary hydrothermal systems. In: Valyashko VM (ed) Hydrothermal experimental data. Wiley, Chichester, pp 1–133

    Chapter  Google Scholar 

  10. Reimer J, Vogel F (2013) High pressure differential scanning Calorimetry of the hydrothermal salt solutions K2SO4-Na2SO4-H2O and K2HPO4-H2O. RSC Adv 3:24503

    Article  CAS  Google Scholar 

  11. Dinjus E, Kruse A, Tröger N (2011) Hydrothermale Karbonisierung: 1. Einfluss des Lignins in Lignocellulosen. Chemie Ingenieur Technik 83(10):1734–1741

    Article  CAS  Google Scholar 

  12. Waldner MH, Vogel F (2005) Renewable production of methane from Woody biomass by catalytic hydrothermal gasification. Ind Eng Chem Res 44:4543–4551

    Article  CAS  Google Scholar 

  13. Ramke HG (2011) HTC – Neuentwicklungen und Umsetzung, Oral presentation NaRo-Tec, 30 June 2011. www.duesse.de/znr/pdfs/2011/2011-06-30-htc-07.pdf. Retrieved: 28 Sept 2014

  14. Müller JB (2012) Hydrothermal gasification of biomass – investigation on coke formation and continuous salt separation with pure substrates and real biomass. Dissertation, ETH Zürich

    Google Scholar 

  15. Berl E, Biebesheimer H (1933) Zur Frage der Entstehung des Erdöls. Justus Liebigs Annalen der Chemie 504:38–61

    Article  CAS  Google Scholar 

  16. Berl E, Schmidt A, Biebesheimer A, Dienst W (1932) Die Entstehung von Erdöl, Asphalt und Steinkohle. Die Naturwissenschaften 35:652–655

    Article  Google Scholar 

  17. Yu S-H, Cui X, Li L, Li K, Yu B, Antonietti M, Cölfen H (2004) From starch to metal/carbon hybrid nanostructures: hydrothermal metal-catalyzed carbonization. Adv Mater 16(18):1636–1640

    Article  CAS  Google Scholar 

  18. Titirici MM, Thomas A, Yu S-H, Müller J-O, Antonietti M (2007) A direct synthesis of mesoporous carbons with bicontinuous pore morphology from crude plant material by hydrothermal carbonization. Chem Mater 19:4205–4212

    Article  CAS  Google Scholar 

  19. Titirici MM, White RJ, Falco C, Sevilla M (2012) Black perspectives for a green future: hydro-thermal carbons for environment protection and energy storage. Energy Environ Sci 5:6796

    Article  Google Scholar 

  20. Glasner C, Deerberg G, Lyko H (2011) Hydrothermale Carbonisierung: Ein Überblick. Chemie Ingenieur Technik 83(11):1932–1943

    Article  CAS  Google Scholar 

  21. Kläusli TM (2014) Hydrothermale Carbonisierung. Oral presentation i-Cleantech Vlaanderen vzw, Jan 2014

    Google Scholar 

  22. Stemann J, Ziegler F (2011) Optimierung der Energiebilanz bei der hydrothermalen Karbonisierung. Oral presentation 2. Fachtagung HTC, ZHAW, Wädenswil, 23 Sept 2011

    Google Scholar 

  23. Belusa T, Funke A, Behrendt F, Ziegler F (2010) Hydrothermale Karbonisierung und energetische Nutzung von Biomasse – Möglichkeiten und Grenzen. In: Hydrothermale Carbonisierung, Fachagentur Nachwachsende Rohstoffe. Gülzower Fachgespräche, Bd 33

    Google Scholar 

  24. Ruyter HP (1982) Coalification model. Fuel 61:1182–1187

    Article  CAS  Google Scholar 

  25. Kieseler S, Neubauer Y, Zobel N (2013) Ultimate and proximate correlations for estimating the higher heating value of hydrothermal solids. Energy Fuel 27:908–918

    Article  CAS  Google Scholar 

  26. Funke A (2012) Hydrothermale Karbonisierung von Biomasse – Reaktionsmechanismen und Reaktionswärme. Dissertation, TU Berlin

    Google Scholar 

  27. Escala M, Zumbühl T, Koller C, Junge R, Krebs R (2013) Hydrothermal carbonization as an energy-efficient alternative to established drying technologies for sewage sludge: a feasibility study on a laboratory scale. Energy Fuel 27:454–460

    Article  CAS  Google Scholar 

  28. Mosteiro Romero M, Vogel F, Wokaun A (2014) Liquefaction of wood in hot compressed water. Part 1: experimental results. Chem Eng Sci 109:111–122

    Article  CAS  Google Scholar 

  29. Zelkowski J (2004) Kohlecharakterisierung und Kohleverbrennung, 2nd edn. VGB Powertech, Essen

    Google Scholar 

  30. Titirici MM (ed) (2013) Sustainable carbon materials from hydrothermal processes. Wiley, Chichester

    Google Scholar 

  31. Stark A, Maas R (2013) Industrial hydrothermal carbonization challenges and (carbon-) Solutions. Oral presentation at the 1st Mediterranean biochar symposium, Palermo, 17–18 Jan 2013

    Google Scholar 

  32. Krebs R, Baier U, Deller A, Escala M, Floris J, Gerner G, Hartmann F, Hölzl B, Kohler C, Kühni M, Stucki M, Wanner R (2013) Weiterentwicklung der hydrothermalen Karbonisierung zur CO2-sparenden und kosteneffizienten Trocknung von Klärschlamm im industriellen Massstab sowie der Rückgewinnung von Phosphor, final report UTF 387.21.11./ IDM 2006.2423.222. Bundesamt für Umwelt, Bern

    Google Scholar 

  33. Ramke HG, Blöhse D, Lehmann H-J, Antonietti M, Fettig J (2010) Machbarkeitsstudie zur Energiegewinnung aus organischen Siedlungsabfällen durch Hydrothermale Carbonisierung, Abschlussbericht, Deutsche Bundesstiftung Umwelt. Osnabrück

    Google Scholar 

  34. Ramke HG, Blöhse D (2012) Hydrothermale Carbonisierung von Biomasse – Chancen, Risiken, aktueller Entwicklungsstand, Oral presentation 16. Fachkongress Zukunftsenergien Eworld energy & water, Essen, Germany, 7. February, EnergieAgentur.NRW

    Google Scholar 

  35. Buttmann M (2011) Klimafreundliche Kohle durch Hydrothermale Karbonisierung von Biomasse. Chemie Ingenieur Technik 83(11):1890–1896

    Article  CAS  Google Scholar 

  36. Jeitz P, Deiss O (2012) Hydrothermale Carbonisierung – Neue Wege in der Klärschlammaufbereitung. Aqua & Gas 4:42–45

    Google Scholar 

  37. Neumann S (2014) AVA-CO2 Switzerland. Oral presentation LAV Fachtagung „Planung und Vision – Klärschlammverwertung ab 2015“, Markranstädt, 15. Mai 2014

    Google Scholar 

  38. Bolin KM, Dooley B, Kearney RJ (2007) Carbonization technology converts biosolids to an economical, renewable fuel. In: Moving forward: wastewater biosolids sustainability, Moncton, 24–27 June

    Google Scholar 

  39. Siemon D (2014) SunCoal Industries GmbH, Ludwigsfelde. Personal communication via Email, 23 Sept 2014

    Google Scholar 

  40. Serfass K (2011) Vorstellung REVATEC – Verfahren, oral presentation at „Grüne Woche“ 2011, Berlin

    Google Scholar 

  41. TFC Engineering AG (2014) Produkteflyer IFAT München http://www.tfc-engineering.li/fileadmin/images/umwelt/carboniserung/Flyer_TFC_IFAT_2014.pdf. Retrieved: 28 Sept 2014

  42. Ramke HG, Rebsamen R (2011) Hydrothermale Carbonisierung – Vorbehandlungsschritt für die effiziente energetische Nutzung von Klärschlamm und Grüngutabfällen. Oral presentation waste to energy + recycling, Bremen, May 2011

    Google Scholar 

  43. Hernández Latorre ML (2011) Solid HTC Biofuel from Hydrothermal Carbonisation. Oral presentation at the 6th international bioenergy congress, Valladolid, 18 Oct 2011

    Google Scholar 

  44. Hilber B (2014) Loritus GmbH, München. Personal communication via Email, 29 Sept 2014

    Google Scholar 

  45. Guenther T (2014) Grenol GmbH, Ratingen. Personal communication via Email, 23 Sept 2014

    Google Scholar 

  46. Peus D (2013) Game-changing renewable energy technology, High density coal replacement from biomass by HTC. Antaco UK Ltd., Guildford

    Google Scholar 

  47. Vorlop KD, Schuchardt F, Prüße U (2010) Hydrothermale Carbonisierung – Analyse und Ausblick. In: Hydrothermale Carbonisierung, Fachagentur Nachwachsende Rohstoffe. Gülzower Fachgespräche, Bd 33

    Google Scholar 

  48. Rebsamen R (2013) Hydrothermale Carbonisierung. Oral presentation SVUT Forum „Neue Verfahren zur Aufbereitung von organischen Abfällen und fester Biomasse“, Bern, 20 Mar 2013

    Google Scholar 

  49. Remy C, Warneke J, Lesjean B, Chauzy J, Sardet C (2013) HTC-Check: Energiebilanz und Carbon footprint von Referenztechnologien und HTC-Prozess bei der Klärschlammentsorgung. HTC-Workshop „Hydrothermale Carbonisierung eine energieeffiziente Behandlung von Klärschlämmen und Bioabfällen?“, Kompetenzzentrum Wasser Berlin, 26 Sept 2013

    Google Scholar 

  50. Elliott DC (1980) Process development for biomass liquefaction, In: ACS annual meeting. American Chemical Society, San Francisco, pp 257–263

    Google Scholar 

  51. Venderbosch RH, Sander C, Tjeerdsma B (2000) Hydrothermal conversion of wet biomass – a review. Report GAVE-9919, Novem, Utrecht, Apr 2000

    Google Scholar 

  52. Goudriaan F, Peferoen DGR (1990) Liquid fuels from biomass via a hydrothermal process. Chem Eng Sci 45(8):2729–2734

    Article  CAS  Google Scholar 

  53. Müller JB, Vogel F (2012) Tar and coke formation during hydrothermal processing of glycerol and glucose. Influence of temperature, residence time and feed concentration. J Supercrit Fluids 70(10):126–136

    Article  Google Scholar 

  54. Iversen SB, Larsen T, Lüthje V, Felsvang K, Nielsen PR, Galla U, Boukis N (2005): Cat-Liq™ – a disruptive technology for biomass conversion. In: 14th European biomass conference. Paris, 17–21 Oct 2005

    Google Scholar 

  55. Behrendt F, Neubauer Y, Schulz-Tönnies K, Wilmes B, Zobel N (2006) Direktverflüssigung von Biomasse – Reaktionsmechanismen und Produktverteilungen. Bericht 114-50-10-0337/05-B, 8 June 2006

    Google Scholar 

  56. Mosteiro Romero M, Vogel F, Wokaun A (2014) Liquefaction of wood in hot compressed water. Part 2: modeling of particle dissolution. Chem Eng Sci 109:220–235

    Article  CAS  Google Scholar 

  57. Boocock DGB, Shermann KM (1985) Further aspects of powdered poplar wood liquefaction by aqueous pyrolysis. Canad Chem Eng 63:627–633

    Article  CAS  Google Scholar 

  58. Christensen PS, Peng G, Vogel F, Iversen BB (2014) Hydrothermal liquefaction of the microalgae Phaeodactylum tricornutum: impact of reaction conditions on product and elemental distribution. Energy Fuel 28:5792–5803

    Article  CAS  Google Scholar 

  59. Christensen PR, Mørup AJ, Mamakhel A, Glasius M, Becker J, Iversen BB (2014) Effects of heterogeneous catalyst in hydrothermal liquefaction of dried distillers grains with solubles. Fuel 123:158–166

    Article  CAS  Google Scholar 

  60. Blommel PG, Cortright RD (2008) Production of conventional liquid fuels from sugars. White Paper, Virent Energy Systems, Inc, Madison, 25 Aug 2008

    Google Scholar 

  61. Bobleter O, Binder H (1980) Dynamischer hydrothermaler Abbau von Holz. Holzforschung 34:48–51

    Article  CAS  Google Scholar 

  62. Mørup AJ, Christensen PR, Aarup DF, Dithmer L, Mamakhel A, Glasius M, Iversen BB (2012) Hydrothermal liquefaction of dried distillers grains with solubles: a reaction temperature study. Energy Fuel 26:5944–5953

    Article  Google Scholar 

  63. Zhang B, von Keitz M, Valentas K (2008) Thermal effects on hydrothermal biomass liquefaction. Appl Biochem Biotechnol 147:143–150

    Article  CAS  Google Scholar 

  64. Hammerschmidt A, Boukis N, Hauer E, Galla U, Dinjus E, Hitzmann B, Larsen T, Nygaard SD (2011) Catalytic conversion of waste biomass by hydrothermal treatment. Fuel 90:555–562

    Article  CAS  Google Scholar 

  65. Tekin K, Karagöz S, Bektaş S (2014) A review of hydrothermal biomass processing. Renew Sust Energy Rev 40:673–687

    Article  CAS  Google Scholar 

  66. Villadsen SR, Dithmer L, Forsberg R, Becker J, Rudolf A, Iversen SB, Iversen BB, Glasius M (2012) Development and application of chemical Analysis methods for investigation of bio-oils and aqueous phase from hydrothermal liquefaction of biomass. Energy Fuel 26:6988–6998

    CAS  Google Scholar 

  67. Davis HG, Eames MA, Figueroa C, Gansley RR, Schaleger LL, Watt DW (1985) The products of direct liquefaction of biomass. In: Overend RP, Milne TA, Mudge LK (eds) Fundamentals of thermochemical biomass conversion. Elsevier, Amsterdam, pp 1027–1037

    Chapter  Google Scholar 

  68. Goudriaan F, Naber JE (2003) Transportation fuels from biomass via the HTU® process. In: 4th European motor biofuels forum, Berlin, 24–26 Nov 2003

    Google Scholar 

  69. Goudriaan F, Naber JE, Zeevalkink JA (2005) Conversion of biomass residues to transportation fuels with the HTU® process. In: 14th European biomass conference and exhibition, Paris, 17–21 Oct 2005

    Google Scholar 

  70. Elliott DC (1985) Analysis and comparison of products from wood liquefaction. In: Overend RP, Milne TA, Mudge LK (eds) Fundamentals of thermochemical biomass conversion. Elsevier, Amsterdam, pp 1003–1018

    Chapter  Google Scholar 

  71. Elliott DC, Schiefelbein GF (1989) Liquid hydrocarbon fuels from biomass. Am Chem Soc, Div Fuel Chem Preprints 34(4):1160–1166

    CAS  Google Scholar 

  72. Elliott DC, Hart TR, Schmidt AJ, Neuenschwander GG, Rotness LJ, Olarte MV, Zacher AH, Albrecht KO, Hallen RT, Holladay JE (2013) Process development for hydro-thermal liquefaction of algae feedstocks in a continuous-flow reactor. Algal Res 2:445–454

    Article  Google Scholar 

  73. Römpp online. Stuttgart, Georg Thieme Verlag KG. https://www.thieme.de/de/thiemechemistry/roempp-54843.htm. Retrieved: Aug 2014

  74. Wauquier JP (1995) Petroleum refining: crude oil, petroleum products, process flowsheets, 1st edn. Editions Technip, Paris

    Google Scholar 

  75. Toor SS (2010) Modelling and optimization of Catliq® liquid biofuel process. PhD thesis, Aalborg University, Aalborg

    Google Scholar 

  76. Hoffmann J (2014) Bio-oil production – process optimization and product quality. PhD thesis, Aalborg University, Aalborg

    Google Scholar 

  77. Jensen CU, Rodriguez Guerrero JK, Karatzos S, Olofsson G, Iversen SB (2017) Biomass conversion and biorefinery. Fundamentals of Hydrofaction™: renewable crude oil from woody biomass. doi:10.1007/s13399-017-0248-8

  78. Goudriaan F, van de Beld B, Boerefijn FR, Bos GM, Naber JE, van der Wal S, Zeevalkink JA (2000) Thermal efficiency of the HTU® process for biomass liquefaction. In: Bridgwater AV (Ed) Progress in thermochemical biomass conversion, Tyrol, 18–21 Sept 2000

    Google Scholar 

  79. Berends RH, Zeevalkink JA, Goudriaan F, Naber JE (2004) Results of the first long duration run of the HTU® pilot plant at TNO-MEP. In: Proceedings of the 2nd world biomass conference, Rome, 10.–14. Mai 2004, p 535

    Google Scholar 

  80. Chornet E, Overend RP (1985) Biomass liquefaction: an overview. In: Overend RP, Milne TA, Mudge LK (eds) Fundamentals of thermo-chemical biomass conversion. Elsevier, Amsterdam, pp 967–1002

    Chapter  Google Scholar 

  81. Bouvier JM, Gelus M, Maugendre S (1988) Wood liquefaction – an overview. Appl Energy 30:85–98

    Article  CAS  Google Scholar 

  82. Toor SS, Rosendahl L, Rudolf A (2011) Hydrothermal liquefaction of biomass: a review of sub-critical water technologies. Energy 36:2328–2342

    Article  CAS  Google Scholar 

  83. Rosendahl L (2014) Personal communication via Email, Sept 2014

    Google Scholar 

  84. Jensen CU, Rasmussen KM (2014) Co-processing bio-crude at petroleum refineries: fractional distillation and deoxygenation of HTL bio-crude to evaluate the potential as co-processing feed. Master thesis, Aalborg University, Aalborg

    Google Scholar 

  85. Modell M (1985) Gasification and liquefaction of forest products in supercritical water. In: Overend RP, Milne TA, Mudge LK (eds) Fundamentals of thermochemical biomass conversion. Elsevier, Amsterdam, pp 95–119

    Chapter  Google Scholar 

  86. Elliott DC, Phelps MR, Sealock LJ Jr, Baker EG (1994) Chemical processing in high pressure aqueous environments. 4. Continuous-flow reactor process development experiments for organics destruction. Ind Eng Chem Res 33:566–574

    Article  CAS  Google Scholar 

  87. Boukis N, Galla U, Diem V, Dinjus E (2006) Biomass gasification in supercritical water: first results of the pilot plant. In: Bridgwater AV, Boocock DGB (Eds) Proceedings of the science in thermal and chemical biomass conversion STCBC, Victoria, 2004, p 975–990

    Google Scholar 

  88. Nakamura A, Kiyonaga E, Yamamura Y, Shimizu Y, Matsumura Y, Minowa T, Noda Y (2007) Gasification of chicken manure using suspended activated carbon catalyst in supercritical water. In: Proceedings of the 15th European biomass conference & exhibition, Berlin, 7.–11. Mai 2007, pp 1247–1250

    Google Scholar 

  89. van Bennekom JG, Venderbosch RH, Assink D, Lemmens KPJ, Heeres HJ (2012) Bench scale demonstration of the Supermethanol concept: the synthesis of methanol from glycerol derived syngas. Chem Eng J 207–208:245–253

    Article  Google Scholar 

  90. Penninger JML, Wagenaar BM, Assink D, van de Beld L (2003) SWS process for production of hydrogen integrated with generation of clean energy. In: 1st European hydrogen conference, Grenoble, Sept 2003

    Google Scholar 

  91. Schubert M, Müller JB, Vogel F (2014) Continuous hydrothermal gasification of glycerol mixtures: autothermal operation, simultaneous salt recovery, and the effect of K3PO4 on the catalytic gasification. Ind Eng Chem Res 53:8404–8415

    Article  CAS  Google Scholar 

  92. Guo L, Jin H, Lu Y (2015) Supercritical water gasification research and development in China. J Supercrit Fluids 96:144–150

    Article  CAS  Google Scholar 

  93. Zöhrer H, De Boni E, Vogel F (2014) Hydrothermal processing of fermentation residues in a continuous multistage rig – operational challenges for liquefaction, salt separation, and catalytic gasification. Biomass Bioenergy 65:51–63

    Article  Google Scholar 

  94. D’Jesús P, Artiel C, Boukis N, Kraushaar-Czarnetzki B, Dinjus E (2005) Influence of educt preparation on gasification of corn silage in supercritical water. Ind Eng Chem Res 44:9071–9077

    Article  Google Scholar 

  95. D’Jesús P, Boukis N, Kraushaar-Czarnetzki B, Dinjus E (2006) Influence of process variables on gasification of corn silage in supercritical water. Ind Eng Chem Res 45:1622–1630

    Article  Google Scholar 

  96. Kersten SRA, Potic B, Prins W, Van Swaaij WPM (2006) Gasification of model compounds and wood in hot compressed water. Ind Eng Chem Res 45:4169–4177

    Article  CAS  Google Scholar 

  97. Potic B, Kersten SRA, Ye M, van der Hoef MA, Kuipers JAM, van Swaaij WPM (2005) Fluidization with hot compressed water in micro-reactors. Chem Eng Sci 60:5982–5990

    Article  CAS  Google Scholar 

  98. Smith RL Jr, Fang Z (2009) Techniques, applications and future prospects of diamond anvil cells for studying supercritical water systems. J Supercrit Fluids 47:431–446

    Article  CAS  Google Scholar 

  99. Yakaboylu O, Harinck J, Smit KGG, de Jong W (2013) Supercritical water gasification of manure: a thermodynamic equilibrium modeling approach. Biomass Bioenergy 59:253–263

    Article  CAS  Google Scholar 

  100. Peterson AA, Dreher M, Wambach J, Nachtegaal M, Dahl S, Nørskov JK, Vogel F (2012) Evidence of scrambling over ruthenium-based catalysts in supercritical-water gasification. Chem Cat Chem 4:1185–1189

    CAS  Google Scholar 

  101. Czekaj I, Pin S, Wambach J (2013) Ru/active carbon catalyst: improved spectroscopic data analysis by density functional theory. J Phys Chem C 117:26588–26597

    Article  CAS  Google Scholar 

  102. Vogel F (2015) Hydrothermal production of SNG from wet biomass. In: Schildhauer TJ, Biollaz SMA (eds) Synthetic natural gas from coal and biomass. Wiley, Hoboken

    Google Scholar 

  103. Elliott DC (2008) Catalytic hydrothermal gasification of biomass. Biofuels Bioprod Biorefin 2:254–265

    Article  CAS  Google Scholar 

  104. Boukis N, Galla U, D’Jesús P, Müller H, Dinjus E (2005) Gasification of wet biomass in supercritical water. Results of pilot scale experiments. In: Proceedings of the 14th European biomass conference & exhibition, Paris, 17–21 Oct 2005

    Google Scholar 

  105. Boukis N, Galla U, Müller H, Dinjus, E (2008) Hydrothermal gasification of glycerol on the pilot plant scale. In: Proceedings of the 16th European biomass conference & exhibition, Valencia, 2–6 June 2008

    Google Scholar 

  106. Schubert M, Regler JW, Vogel F (2010) Continuous salt precipitation and separation from supercritical water. Part 1: type 1 salts. J Supercrit Fluids 52:99–112

    Article  CAS  Google Scholar 

  107. Möbius A, Boukis N, Galla U, Dinjus E (2012) Gasification of pyroligneous acid in supercritical water. Fuel 94:395–400

    Article  Google Scholar 

  108. Elliott DC, Hart TR, Neuenschwander GG, Rotness LJ, Olarte MV, Zacher AH (2012) Chemical processing in high-pressure aqueous environments. 9. Process development for catalytic gasification of algae feedstocks. Ind Eng Chem Res 51:10768–10777

    Article  CAS  Google Scholar 

  109. Cortright RD, Davda RR, Dumesic JA (2002) Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water. Nature 418:964–967

    Article  CAS  Google Scholar 

  110. Huber GW, Chheda JN, Barrett CJ, Dumesic JA (2005) Production of liquid alkanes by aqueous-phase processing of biomass-derived carbohydrates. Science 308:1446–1450

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédéric Vogel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this entry

Cite this entry

Vogel, F. (2017). Hydrothermal Conversion of Biomass. In: Meyers, R. (eds) Encyclopedia of Sustainability Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2493-6_993-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2493-6_993-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-2493-6

  • Online ISBN: 978-1-4939-2493-6

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics