Skip to main content

Hazardous Waste Incineration Ashes and Their Utilization

  • Living reference work entry
  • First Online:

Glossary

Ash:

Solid incineration residue

Hazard:

Potential to do harm

MSWI:

Municipal waste incinerator

Risk:

Chance that harm occurs

WTE incinerator:

Waste-to-energy incinerator, incinerator also producing useful energy (e.g., electricity)

Definition of the Subject

This chapter deals with hazardous solid residues, usually called ashes , from waste incineration. What is to be considered hazardous in this context shows geographical and temporal variability. Currently, hazardous waste incineration ashes are mostly dumped, or disposed of, in landfills or ash lagoons. There is however also substantial, but geographically variable, utilization of such ashes, mostly in construction, including civil engineering (e.g., in roads, embankments), and there have been proposals for wider utilization. Much research has been done on better and wider utilization of hazardous waste incineration ashes, but little thereof has found its way to actual commercial...

This is a preview of subscription content, log in via an institution.

References

  1. Johannessen KM (1996) The regulation of municipal waste incineration ash; a legal review and update. J Hazard Mater 47:383–393

    Article  CAS  Google Scholar 

  2. Reijnders L (2005) Disposal, uses and treatments of combustion ashes: a review. Resour Conserv Recycl 43:313–336

    Article  Google Scholar 

  3. Cyr M, Coutand M, Clastres PJ (2007) Technological and environmental behavior of sewage sludge ash (SSA) in cement-based materials. Cem Concr Res 37:1278–1289

    Article  CAS  Google Scholar 

  4. Murakami T, Suzuki Y, Nagasawa H, Yamamoto T, Koseki T, Hirose H, Okamoto S (2009) Combustion characteristics of sewage sludge in an incineration plant to energy recovery. Fuel Process Technol 90:778–783

    Article  CAS  Google Scholar 

  5. Sawell SE, Chandler AJ, Eighmy TT, Hartlen J, Hjelmar O, Kosson D, van der Sloot HA, Vehlow J (1995) An international perspective on the characterization and management of residues from MSW incinerators. Biomass Bioenergy 9:377–386

    Article  CAS  Google Scholar 

  6. Römbke J, Moser T, Moser H (2009) Ecotoxicological characterization of 12 incineration ashes using 6 laboratory tests. Waste Manag 29:2475–2482

    Article  CAS  Google Scholar 

  7. Gidarakos E, Petrantonaki M, Anastasadou K, Schramm K (2009) Characterization and hazard evaluation of bottom ash produced from incinerated hospital waste. J Hazard Mater 172:935–942

    Article  CAS  Google Scholar 

  8. Coutand M, Cyr M, Deydier E, Guilet R, Clastres P (2008) Characteristics of industrial and laboratory meat and bone meal ashes and their potential applications. J Hazard Mater 150:522–532

    Article  CAS  Google Scholar 

  9. Karamalidis AK, Voudrias EA (2009) Leaching and immobilization behavior of Zn and Cr from cement-based stabilization/solidification of ash produced from incineration of refinery oily sludge. Environ Eng Sci 26:81–96

    Article  CAS  Google Scholar 

  10. Sakanakura H (2005) Diffusion test of 20 kinds of waste molten slags and competitive materials. J Mater Cycles Waste Manag 7:71–77

    Article  CAS  Google Scholar 

  11. Chiang K, Hu Y (2010) Water washing effects on metals emission reduction during municipal solid waste incinerator (MSWI) fly ash melting process. Waste Manag. https://doi.org/10.1016/j.wasman.2009.12.009

  12. Tian S, Yu M, Wang W, Wang Q, Wu Z (2009) Investigating the speciation of copper in secondary fly ash by X-ray absorption spectroscopy. Environ Sci Technol 43:9084–9088

    Article  CAS  Google Scholar 

  13. Donatello S, Tyrer M, Cheeseman CR (2010) EU landfill waste acceptance criteria and EU hazardous waste directive compliance testing of incinerated sewage sludge ash. Waste Manag 20:63–71

    Article  CAS  Google Scholar 

  14. Gunning P, Hills CD, Araizi PK, Maries A, Wray DS (2014) Carbon capture using wastes: a review. http://gala.gle.ac.uk/id/print/13579. Accessed 4 May 2017

  15. Reijnders L (2014) Phosphorus resources, their depletion and conservation, a review. Resour Conserv Recycl 93:32–49

    Article  Google Scholar 

  16. Donatello S, Cheeseman CR (2013) Recycling and recovery routes for incinerated sewage sludge ash (ISSA): a review. Waste Manag 33:2328–2340

    Article  CAS  Google Scholar 

  17. Nie Y (2008) Development and prospects of municipal solid waste (MSW) incineration in China. Front Environ Sci Eng China 2:1–7

    Article  CAS  Google Scholar 

  18. Barbosa R, Lapa N, Boavida D, Lopes H, Gulyurtlu I, Mendes B (2009) Co-combustion of coal and sewage sludge: chemical and ecotoxicological properties of ashes. J Hazard Mater 170:902–919

    Article  CAS  Google Scholar 

  19. Wiles CC (1996) Municipal solid waste combustion ash: state-of-the-knowledge. J Hazard Mater 47:325–346

    Article  CAS  Google Scholar 

  20. Reich J (2003) Slag from hazardous waste incineration; reduction of heavy metal leaching. Waste Manag Res 21:110–118

    Article  CAS  Google Scholar 

  21. Zhao I, Zhang F, Chen M, Liu Z, Wu DBJ (2010) Typical pollutants in bottom ashes from a medical waste incinerator. J Hazard Mater 173:181–185

    Article  CAS  Google Scholar 

  22. Vehlow J, Bergfeldt B, Hunsinger H (2006) PCDD/F and related compounds in solid residues from municipal solid waste incineration – a literature review. Waste Manag Res 24:404–420

    Article  CAS  Google Scholar 

  23. Chandler AJ, Eighmy TT, Hartlen J, Hjelmar O, Kosson DS, Sawell SE, van der Sloot HA, Vehlow J (1997) Municipal solid waste incinerator residues. Elsevier Science, Amsterdam

    Google Scholar 

  24. Durnusoglu E, Bakoglu M, Karademir A, Kirli L (2009) Adsorbable organic halogens (AOX) in solid residues from hazardous and clinical waste incineration. J Environ Sci Health A 41:1699–1714

    Article  CAS  Google Scholar 

  25. Neuer-Etscheidt K, Nordsieck HO, Liu Y, Kettrup A, Zimmermann R (2006) PCDD/F and other micropollutants in MSWI crude gas and ashes during plant start-up and shut down processes. Environ Sci Technol 40:342–349

    Article  CAS  Google Scholar 

  26. Rubli S, Medilanski E, Belevi H (2000) Characterization of total organic carbon in solid residues provides insight into sludge incineration processes. Environ Sci Technol 34:1772–1777

    Article  CAS  Google Scholar 

  27. Quina MJ, Bordado JC, Quinta-Ferreira RM (2008) Treatment and use of air pollution control residues from MSW incineration: an overview. Waste Manag 28:2097–2121

    Article  CAS  Google Scholar 

  28. Freyssinet P, Piantone P, Azaroual M, Itard Y, Clozel-Lecloup GD, Baubron JC (2002) Chemical changes and leachate mass balance of municipal solid waste bottom ash submitted to weathering. Waste Manag 22:159–172

    Article  CAS  Google Scholar 

  29. Dugenies S, Combrisson J, Casablanca H, Grenier-Loustalot MF (1999) Municipal solid waste incineration bottom ash: characterization and kinetic studies of organic matter. Environ Sci Technol 33:1110–1115

    Article  Google Scholar 

  30. Liu Y, Li Y, Li X, Jiang Y (2008) Leaching behavior of heavy metals and PAHs from MSWI bottom ash in a long-term static immersing experiment. Waste Manag 28:1126–1136

    Article  CAS  Google Scholar 

  31. Okrent D (1999) On intergenerational equity and its clash with intragenerational equity and on the need for policies to guide regulation of disposal of wastes and other activities posing very long-term risks. Risk Anal 19:877–901

    CAS  Google Scholar 

  32. Dellinger B, D’Alessio AD, D’Anna AD, Ciajolo A, Gullett B, Henry H, Keener M, Lighty J, Lomicki S, Lucas D, Oberdörster G, Pitea D, Suk W, Sarofim A, Smith KR, Stoeger T, Tolbert P, Wyzga R, Zimmermann R (2008) Combustion byproducts and their health effects. Environ Eng Sci 25:1107–1114

    Article  CAS  Google Scholar 

  33. Shih S, Wang Y, Chang J, Jang J, Kuo F, Wang L, Chang-Chien G (2006) Comparisons of levels of polychlorinated dibenzo-p-dioxins/benzofurans in the surrounding environment and workplace of two municipal solid waste incinerators. J Hazard Mater B 137:1817–1830

    Article  CAS  Google Scholar 

  34. Jiang J, Oberdörster G, Biswas P (2009) Characterization of size, surface charge, and agglomeration state on nanoparticle dispersions for toxicological studies. J Nanopart Res 11:77–89

    Article  CAS  Google Scholar 

  35. Reijnders L (2012) Human health hazards of persistent inorganic and carbon nanoparticles. J Mater Sci 47:5061–5073

    Article  CAS  Google Scholar 

  36. Chen H, Chen I, Chia T (2010) Occupational exposure and DNA strand breakage of workers in bottom ash recovery and fly ash treatment plants. J Hazard Mater 174:23–27

    Article  CAS  Google Scholar 

  37. Förster H, Thajudeen T, Funk C, Peukert W (2016) Separation of nanoparticles: filtration and scavenging from waste incineration plants. Waste Manag 52:346–352

    Article  CAS  Google Scholar 

  38. Mitrano DM, Mehrabi K, Dasilva YAR, Nowack B (2017) Mobility of metallic (nano) particles in leachates from landfills containing waste incineration residues. Environ Sci Nano 4:480–492

    Article  CAS  Google Scholar 

  39. Lin K, Chen B (2006) Understanding biotoxicity for reusability of municipal solid waste incinerator (MSWI) ash. J Hazard Mater A 138:9–15

    Article  CAS  Google Scholar 

  40. Chou J, Wey M, Liang H, Chang S (2009) Biotoxicity evaluation of fly ash and bottom ash from different municipal solid waste incinerators. J Hazard Mater 168:197–202

    Article  CAS  Google Scholar 

  41. Takeuchi M, Kawahata H, Gupta LP, Itouga M, Sakakibara H, Ohta H, Komai T, Ono Y (2009) Chemistry of fly ash and cyclone ash leachate from waste materials and effects of ash leachates on bacterial growth, nitrogen-transformation activity, and metal accumulation. J Hazard Mater 165:967–973

    Article  CAS  Google Scholar 

  42. Shoji R, Nakayama H, Sakai Y, Mohri S, Yamada M (2008) Evaluation of the ecotoxicity of solid wastes using rapid leaching test and bioassays. J Environ Sci Health A 43:1048–1053

    Article  CAS  Google Scholar 

  43. Triffault-Bouchet G, Clement B, Blake G (2005) Ecotoxicological assessment of pollutant flux released from bottom ash reused in road construction. Aquat Ecosyst Health Manag 8:405–414

    Article  CAS  Google Scholar 

  44. Reijnders L (2009) Are soil pollution risks established by governments the same as actual risks? Appl Environ Soil Sci 237038:1–7

    Google Scholar 

  45. Clement B, Triffault-Bouchet LA, Carbonel J (2005) Are percolates released from solid waste incineration bottom ashes safe for lentic ecosystems? A laboratory ecotoxicological approach based on 100 litre indoor microcosms. Aquat Ecosyst Health Manag 8:427–439

    Article  CAS  Google Scholar 

  46. Michalzik B, Ilgen G, Hertel F, Hantsch S, Bilitewski B (2007) Emissions of organo-metal compounds via the leachate and gas pathway from two differently pre-treated municipal waste materials – a landfill study. Waste Manag 27:497–509

    Article  CAS  Google Scholar 

  47. Sabbas T, Poletti A, Pomi R, Astrup T, Hjelmar O, Mostbauer P, Cappai G, Magel G, Salhofer S, Speiser C, Heuss-Ambicher S, Klein R, Lechner P (2003) Management of municipal solid waste incineration residues. Waste Manag 23:61–88

    Article  CAS  Google Scholar 

  48. Kim Y, Osako M (2004) Effect of adsorption capacity of dissolved humic matter on leachability of dioxins from raw and treated fly ashes of municipal solid waste incinerators. Arch Environ Contam Toxicol 46:8–16

    Article  CAS  Google Scholar 

  49. Todorovic J, Ecke H (2006) Treatment of MSWI residues for utilization as secondary construction minerals: a review of methods. Miner Energy 20(4–5):45–59

    Article  Google Scholar 

  50. Lidelöw S, Lagerkvist A (2007) Evaluation of leachate emissions from crushed rock and municipal solid waste incineration bottom ash used in road construction. Waste Manag 27:1356–1365

    Article  CAS  Google Scholar 

  51. Apul D, Gardner K, Eighmy T, Linder E, Frizzell T, Roberson R (2005) Probabilistic modeling of one-dimensional water movement and leaching from highway embankments containing secondary materials. Environ Eng Sci 22:156–169

    Article  CAS  Google Scholar 

  52. Kosson DS, van der Sloot HA, Sanchez F, Garrabrants AC (2002) An integrated framework for evaluating leaching in waste management and utilization of secondary materials. Environ Eng Sci 19:159–204

    Article  CAS  Google Scholar 

  53. Dabo D, Badreddine R, de Windt L, Drouadaine I (2009) Ten-year chemical evolution of leachate and municipal solid waste incineration bottom ash used in a test road site. J Hazard Mater 172:904–913

    Article  CAS  Google Scholar 

  54. Reijnders L (2007) Cleaner phosphogypsum, coal combustion ashes and waste incineration ashes for application in building materials: a review. Build Environ 42:1036–1042

    Article  Google Scholar 

  55. Del Valle-Zermeno R, Medina E, Chimenos JM, Formosa J, Liorente I, Bastidas DM (2017) Influence of MSW bottom ash used as unbound granular material on the corrosion behaviour of reinforced concrete. Int J Mater Cycles Waste Manag 19:124–133

    Article  CAS  Google Scholar 

  56. Aguiar del Toro M, Calmano W, Ecke H (2009) Wet extraction of heavy metals and chloride from MSWI and straw combustion ashes. Waste Manag 29:2494–2499

    Article  CAS  Google Scholar 

  57. Sakanakura H (2007) Formation and durability of dithiocarbamic metals in stabilized air pollution control residue from municipal solid waste incineration and melting processes. Environ Sci Technol 41:1717–1722

    Article  CAS  Google Scholar 

  58. Bosshard RP, Bachofen R, Brandl H (1996) Metal leaching from fly ash from municipal waste incineration by Aspergillus niger. Environ Sci Technol 30:3066–3071

    Article  CAS  Google Scholar 

  59. Yang J, Wang QH, Wang Q, Wu TJ (2008) Comparison of one-step and two step bioleaching for heavy metal removal from municipal solid waste incineration fly ash. Environ Eng Sci 25:783–789

    Google Scholar 

  60. Bayuseno A, Schmahl WW, Müllejans T (2009) Hydrothermal processing of MSWI fly ash – towards new stable minerals and fixation of heavy metals. J Hazard Mater 167:250–259

    Article  CAS  Google Scholar 

  61. Fraissler G, Jollet M, Mattenberger H, Brunner T, Obernberger I (2009) Thermodynamic equilibrium calculations concerning the removal of heavy metals from sewage sludge ash by chlorination. Chem Eng Process Process Intensif 48:152–164

    Article  CAS  Google Scholar 

  62. Bo D, Zhang F, Zhao L (2009) Influence of supercritical water treatment on heavy metals in medical waste incineration ash. J Hazard Mater 170:66–71

    Article  CAS  Google Scholar 

  63. Funari V, Mäkinen J, Salminen J, Braga R, Dinelli E, Revitzer H (2017) Metal removal from municipal solid waste incineration fly ash: a comparison between chemical leaching and bioleaching. Waste Manag 60:367–406

    Article  CAS  Google Scholar 

  64. Rosenkrantz T, Kisser J, Wenzwel WW, Puschenreiter M (2017) Waste or substrate for metal hyperaccumulating plants –the potential of phytomining on waste incineration bottom ash. Sci Total Environ 575:910–918

    Article  CAS  Google Scholar 

  65. Guedes P, Couto N, Ottosen LM, Kirkelund GM, Mateus E, Ribeiro AB (2016) Valorisation of ferric sewage sludge ashes; potential as a phosphorus source. Waste Manag 52:193–201

    Article  CAS  Google Scholar 

  66. Silva RV, de Brito J, Lynn CJ, Dhir RK (2017) Use of municipal solid waste incineration bottom ashes in alkali-activated materials, ceramics and granular applications: a review. Waste Manag 68:207–220

    Article  CAS  Google Scholar 

  67. Guo X, Xiang D, Duan G, Mou P (2010) A review of mechanochemistry applications in waste management. Waste Manag 30:4–10

    Article  CAS  Google Scholar 

  68. Siddique R (2008) Waste materials and by-products in concrete. Springer, London

    Google Scholar 

  69. Dou X, Ren F, Nguyen MQ, Ahamed A, Yin K, Chan WP, Chang VW (2017) Review of MSWI bottom ash utilization from perspectives of collective characterization, treatment and existing application. Renew Sust Energ Rev 79:24–38

    Article  CAS  Google Scholar 

  70. Oehmig WN, Roessler JG, Blaisi NI, Townsend TG (2015) Contemporary practices and findings essential to the development of effective MSWI ash reuse policy in the United States. Environ Sci Pol 51:3014–3312

    Article  Google Scholar 

  71. Yao J, Li W, Kong Q, Wu Y, He R, Shen D (2010) Content, mobility and transfer behavior of heavy metals in MSWI bottom ash in Zhejiang province, China. Fuel 89:616–622

    Google Scholar 

  72. Huang C, Yang W, Ma H, Song Y (2006) The potential of recycling and reusing municipal solid waste incinerator ash in Taiwan. Waste Manag 26:979–987

    Article  Google Scholar 

  73. Pan JR, Huang C, Kao J, Lin S (2008) Recycling MSWI bottom and fly ash as raw materials in Portland cement. Waste Manag 28:1113–1118

    Article  CAS  Google Scholar 

  74. Ferreira C, Ribeiro A, Ottosen L (2003) Possible applications for municipal solid waste fly ash. J Hazard Mater B 96:201–216

    Article  CAS  Google Scholar 

  75. Toller S, Kärrman E, Gustafsson JP, Magnusson Y (2009) Environmental assessment of incinerator residue utilization. Waste Manag 29:2071–2077

    Article  CAS  Google Scholar 

  76. Francois D, Pierson K (2009) Environmental assessment of a road site built with MSWI residue. Sci Total Environ 407:5945–5960

    Article  CAS  Google Scholar 

  77. Huang W, Tang H, Lin K, Liao M (2010) An emerging pollutant contributing to cytotoxicity of MSWI ash wastes: strontium. J Hazard Mater 173:597–604

    Article  CAS  Google Scholar 

  78. Dubey B, Townsend T (2007) Leaching of milled asphalt pavement amended with waste-to-energy ash. Int J Environ Waste Manag 1:145–158

    Article  CAS  Google Scholar 

  79. Kayhanian M, Vichare A, Green PG, Harvey J (2009) Leachability of dissolved chromium in asphalt and concrete surfacing materials. J Environ Manag 90:3574–3580

    Article  CAS  Google Scholar 

  80. Tervahattu H, Kupiainen KJ, Räisänen M, Mäkelä T, Hillamo R (2006) Generation of urban road dust from anti-skid and asphalt concrete aggregates. J Hazard Mater 132:39–46

    Article  CAS  Google Scholar 

  81. Birgisdottir H, Bhander G, Hauschild MZ, Christensen TH (2007) Life cycle assessment of disposal of residues from municipal solid waste incineration: recycling bottom ash in road construction or landfilling in Denmark evaluated by the ROAD-RES model. Waste Manag 27:S75–S84

    Article  CAS  Google Scholar 

  82. Tervahattu H, Kupiainen KJ, Räisänen M, Mäkelä T, Hillamao K (2006) Generation of urban road dust from anti-skid and asphalt concrete aggregates. J Hazard Mater 132:39–46

    Article  CAS  Google Scholar 

  83. Travat I, Lidelow S, Anderas L, Tham C, Lagerkvist A (2009) Assessing the environmental impact of ashes used as landfill cover construction. Waste Manag 29:1336–1246

    Article  CAS  Google Scholar 

  84. Beyer C, Konrad W, Rügner H, Bauer S, Liedl R, Grathwohl P (2009) Model- based prediction of long term leaching of contaminants from secondary materials in road constructions and noise protection dams. Waste Manag 29:839–850

    Article  CAS  Google Scholar 

  85. Reijnders L (2007) The cement industry as a scavenger in industrial ecology and the management of hazardous substances. J Ind Ecol 11(1):15–25

    CAS  Google Scholar 

  86. Karstensen KH, Kinh NK, Thang LB, Vet PH, Tuan ND, Toi DT, Hung NH, Quan TM, Hanh LB, Thang DH (2006) Environmentally sound destruction of obsolete pesticides in developing countries using cement kilns. Environ Sci Pol 9:577–586

    Article  Google Scholar 

  87. Sidhu S, Kast N, Edwards P, Dellinger B (2001) Hazardous air pollutants formation from reactions of raw meal organics in cement kilns. Chemosphere 42:499–506

    Article  CAS  Google Scholar 

  88. Chen C (2004) The emission inventory of PCDD/PCDF in Taiwan. Chemosphere 54:1413–1420

    Article  CAS  Google Scholar 

  89. Chrysochoou M, Dermatas D (2006) Evaluation of ettringite and hydrolumite formation for heavy metal immobilization. J Hazard Mater 136:20–33

    Article  CAS  Google Scholar 

  90. van der Sloot HA, Seignette P, van Zomeren A, Hoede D, Meeuwsen JCL (2003) Effects of alternative materials, life cycle stages, testing and criteria development. www.ecn.nl

  91. Winder C, Carmody M (2002) The dermal toxicity of cement. Toxicol Ind Health 18:321–331

    Article  CAS  Google Scholar 

  92. Liden C (2001) Legislative and preventive measures related to contact dermatitis. Contact Dermatitis 44:65–69

    Article  CAS  Google Scholar 

  93. Lannoye PA (2003) Report on proposed directive of the European parliament and council regarding the limitation of marketing nonylphenol, nonylphenolethoxylate and cement. European Parliament, Brussels

    Google Scholar 

  94. Costa M, Klein CB (2006) Toxicity and carcinogenicity of chromium compounds in humans. Crit Rev Toxicol 36:155–163

    Article  CAS  Google Scholar 

  95. Winder C, Carmody M (2002) The dermal toxicity of cement. Toxicol Ind Health 18:321–331

    Article  CAS  Google Scholar 

  96. Guo Q (1997) Increases of lead and chromium in drinking water from using cement-mortar-lined pipes: initial modeling and assessment. J Hazard Mater 56:181–213

    Article  CAS  Google Scholar 

  97. Pedersen AJ, Frandsen FJ, Riber C, Astrup T, Thomsen SN, Lundtorp K, Mortensen LF (2009) A full-scale study on the partitioning of trace elements in municipal solid waste incineration- effects of firing different waste types. Energy Fuel 23:3475–3489

    Article  CAS  Google Scholar 

  98. Alba N, Vazquez E, Gasso S, Baldasano JM (2001) Stabilization/solidification of MSW incineration residues from facilities with different air pollution systems. Durability of matrices versus carbonation. Waste Manag 21:313–324

    Article  CAS  Google Scholar 

  99. Yvon J, Antenucci D, Lorenzi G, Dutre V, Leclerq D, Nielsen P, Veschkens M (2006) Long term stability in landfills of municipal solid waste incineration fly ashes solidified/stabilized by hydraulic binders. J Geochem Explor 90:143–155

    Article  CAS  Google Scholar 

  100. Meima JA, Comans RNJ (1998) Reducing Sb leaching from municipal solid waste incineration bottom ash by addition of sorbent materials. J Geochem Explor 62:299–304

    Article  CAS  Google Scholar 

  101. Valls S, Vazquez E (2001) Accelerated carbonation of sewage sludge-cement-sand mortars and its environmental impact. Cem Concr Res 31:1271–1276

    Article  CAS  Google Scholar 

  102. Ecke H (2003) Sequestration of metals in carbonated municipal solid waste incineration (MSWI) fly ash. Waste Manag 23:631–640

    Article  CAS  Google Scholar 

  103. Garrabrants AC, Sanchez F, Kosson DS (2004) Changes in constituent equilibrium leaching and pore water characteristics of a Portland cement mortar as a result of carbonation. Waste Manag 24:19–36

    Article  CAS  Google Scholar 

  104. Idachaba MA, Nyavor K, Egiebor NO (2003) Microbial stability evaluation of cement based waste forms at different waste to cement ratios. J Hazard Mater B 96:331–340

    Article  CAS  Google Scholar 

  105. Brombacher C, Bachofen R, Brandl H (1997) Biohydrological processing of solids. A patent review. Appl Microbiol Biotechnol 48:577–587

    Article  CAS  Google Scholar 

  106. Yang J, Wang Q, Luo Q, Wang Q, Wu T (2009) Biosorption behavior of heavy metals in bioleaching process of MSWI fly ash by Aspergillus niger. Biochem Eng J 46:294–299

    Article  CAS  Google Scholar 

  107. van Zomeren A, Comans RNJ (2009) Carbon speciation in municipal solid waste incinerator (MSWI) bottom ash in relation to facilitated metal leaching. Waste Manag 29:2059–2064

    Article  CAS  Google Scholar 

  108. Twardowska J, Szcezepanska J (2002) Solid waste: terminological and long term environmental risk management problems exemplified in a power plant fly ash study. Sci Total Environ 285:28–51

    Article  Google Scholar 

  109. Bayard R, Pestre C, Gourdon R (2009) Aerobic microbial activity in fresh and aged bottom ashes from municipal waste incineration. Int Biodeterior Biodegrad 63:739–746

    Article  CAS  Google Scholar 

  110. Aberg A, Kumpiene J, Ecke H (2006) Evaluation and prediction of emissions from a road built with bottom ash from municipal solid waste incinerator (MSWI). Sci Total Environ 355:1–12

    Article  CAS  Google Scholar 

  111. van der Sloot HA (2000) Comparison of the characteristic leaching behavior of cements using standard EN-196-1 cement mortar and an assessment of their long-term environmental behavior in construction products during service life and recycling. Cem Concr Res 30:1079–1096

    Article  Google Scholar 

  112. Serclérat J, Moskowicz P, Pollet B (2000) Retention mechanisms in mortars of trace metals contained in cement clinkers. Waste Manag 20:259–264

    Article  Google Scholar 

  113. Hunsinger H, Seifert H, Jay K (2006) An economic process to inhibit PCDD/PCDF formation in MSWI by SO2. Organohalogen Compd 68:151–156

    CAS  Google Scholar 

  114. Hunsinger H, Seifert H, Jay K (2007) Reduction of PCDD/F formation in MSWI by a process-integrated SO2 cycle. Environ Eng Sci 24:1145–1159

    Article  CAS  Google Scholar 

  115. Hunsinger H, Seifert H, Jay K (2007) Control of PCDD/F formation under conditions of fluctuating combustion performance in MSWI. Organohalogen Compd 69:956–961

    Google Scholar 

  116. Ke S, Ianhua Y, Xiaodong L, Shenyong L, Yinglei W, Muxing F (2010) Inhibition of de novo synthesis of PCDD/Fs by SO 2 in a model system. Chemosphere. https://doi.org/10.1016/j.chemosphere.2009.12.043

  117. Mast P (1999) Einfluss der Abfallzusammensetzung auf Schadstofgehalt und- Menge der Verbrennuingsrückstaände (Impact of waste composition on the concentration and amount of toxins in combustion residues). TAUW, Berlin

    Google Scholar 

  118. Jeong SM, Osako N, Kim Y (2005) Utilizing a database to interpret leaching characteristics of lead from bottom ashes of municipal waste incinerators. Waste Manag 23:694–701

    Article  CAS  Google Scholar 

  119. Lo S, Tsao Y (1997) Economic analysis of waste minimization for electroplating plants. Water Sci Technol 36:383–390

    Article  CAS  Google Scholar 

  120. Fujimori T, Takaoka M, Takea N (2009) Influence of Cu, Fe, Pb and Zn chlorides and oxides on formation of chlorinated aromatic compounds in MSWI fly ash. Environ Sci Technol 43:8053–8059

    Article  CAS  Google Scholar 

  121. Funari V, Bokhari SNH, Vigliotti L, Meisel T, Braga R (2016) The rare earth elements in municipal solid waste incinerators ash and promising tools for their prospecting. J Hazard Mater 301:471–479

    Article  CAS  Google Scholar 

  122. Boesch ME, Vandenbo C, Daner D, Huter C, Hellweg S (2014) An LCA model for waste incineration enhanced with new technologies for metal recovery and application to the case of Switzerland. Waste Manag 24:378–389

    Article  CAS  Google Scholar 

  123. Purgar A, Winter F, Blasenbauer D, Hartmann S, Fellner J, Lederer J, Rechberger H (2016) Main drivers for integrating zinc recovery from fly ashes into the Viennese waste incineration cluster. Fuel Process Technol 141:243–248

    Article  CAS  Google Scholar 

  124. Fellner J, Lederer J, Purgar A, Winterstetter A, Rechberger H, Winter F, Laner D (2015) Evaluation of resource recovery from waste incineration residues –the case of zinc. Waste Manag 37:95–103

    Article  CAS  Google Scholar 

  125. Franz M (2008) Phosphate fertilizers from sewage sludge ash (SSA). Waste Manag 28:1809–1818

    Article  CAS  Google Scholar 

  126. Adam C, Peplinski B, Michaelis M, Kley G, Simon D (2009) Thermochemical treatment of sewage sludge ashes for phosphorous recovery. Waste Manag 29:1122–1128

    Article  CAS  Google Scholar 

  127. Mayer BK, Baker LA, Boyer TH, Drechsel P, Gifford M, Hanjra MA, Parameswaran P, Stoltzfus J, Westerhoff P, Rittmann BE (2016) Total value of phosphorus recovery. Environ Sci Technol 50:6606–6620

    Article  CAS  Google Scholar 

  128. Wzorek Z, Jodko M, Gorazda K, Rzepecki T (2006) Extraction of phosphorus compounds from ashes from thermal processing of sewage sludge. J Loss Prev Process Ind 19:39–50

    Article  Google Scholar 

  129. Donatello S, Freeman-Pask A, Tyrer M, Cheeseman CR (2010) Effect of milling and acid washing on the pozzolanic activity of incinerator sewage sludge ash. Cem Concr Compos 32:54–61

    Article  CAS  Google Scholar 

  130. Mattenberger H, Fraissler G, Herk P, Hermann L, Obernberger I (2008) Sewage sludge ash to phosphorus fertilizer: variables influencing heavy metal removal during thermochemical treatment. Waste Manag 28:2709–2722

    Article  CAS  Google Scholar 

  131. Kirchmann H, Börjesson G, Kätterer T, Cohen Y (2017) From agricultural use of sewage sludge to nutrient extraction: a soil science outlook. Ambio 46:143–154

    Article  CAS  Google Scholar 

  132. Christen C (2007) Closing the phosphorus loop. Environ Sci Technol 46:2078

    Article  Google Scholar 

  133. Ottosen LM, Perdersen AJ, Hansen HK, Ribeiro AB (2007) Screening the possibility for removing cadmium and other heavy metals from wastewater sludges and bioashes by an electrodialytic method. Electrochim Acta 52:3420–2426

    Article  CAS  Google Scholar 

  134. Kubonova L, Langova S, Nowak B, Winter F (2013) Thermal and hydrometallurgical recovery methods of heavy metals from municipal solid waste fly ash. Waste Manag 33:2322–2327

    Article  CAS  Google Scholar 

  135. Funari Y, Mäkinen J, Salminen J, Braga R, Dinelli E, Revitzer H (2017) Metal removal from municipal solid waste incineration fly ash: a comparison between chemical leaching and bioleaching. Waste Manag 60:397–406

    Article  CAS  Google Scholar 

  136. Tang J, Petranikova M, Ekberg C, Steenari B (2017) Mixer-settler system for the recovery of copper and zinc from MSWI fly ash leachates: an evaluation of a hydrometallurgical process. J Clean Prod 148:595–605

    Article  CAS  Google Scholar 

  137. Erüst C, Akcil A, Gahan CS, Tuncuk A, Deveci H (2013) Biohydrometallurgy of secondary metal resources: a potential alternative approach for metal recovery. J Chem Technol Biotechnol 88:2115–2132

    Article  CAS  Google Scholar 

  138. Zhang F, Yamasaki S, Nazyo M (2001) Application of waste ashes to agricultural land – effect of incineration temperature on chemical characteristics. Sci Total Environ 264:205–214

    Article  CAS  Google Scholar 

  139. Lienert J, Larsen TA (2010) High acceptance of urine source separation in seven European countries: a review. Environ Sci Technol 44:556–566

    Article  CAS  Google Scholar 

  140. Zhang D, Yamaski S, Kimura K (2001) Rare earth element content in various waste ashes and the potential risk to Japanese soils. Environ Int 27:393–398

    Article  Google Scholar 

  141. Rosen CJ, Bierman PM, Olson D (1994) Swiss chard and alfalfa responses in soils amended with municipal waste incinerator ash: growth and elemental composition. J Agric Food Chem 42:1361–1368

    Article  CAS  Google Scholar 

  142. Ferreira C, Ribeiro A, Ottosen L (2003) Possible applications for municipal solid waste fly ash. J Hazard Mater B 93:201–216

    Article  Google Scholar 

  143. Pasquini MW (2006) The use of town refuse ash in urban agriculture around Jos, Nigeria: health and environmental risks. Sci Total Environ 354:43–59

    Article  CAS  Google Scholar 

  144. Passquini MW, Alexander MJ (2004) Chemical properties of urban waste ash produced by open burning on the Jos Plateau: implications for agriculture. Sci Total Environ 319:325–340

    Article  CAS  Google Scholar 

  145. Hwa TJ, Joyseelan S (1977) Conditioning of oily sludges with municipal solid wastes incineration fly ash. Water Sci Technol 35:231–238

    Google Scholar 

  146. Yue Q, Han S, Yue M, Gao B, Li Q, Yu H, Zhao Y, Qi Y (2009) The performance of biological anaerobic filters packed with sludge-fly ash ceramic particles (SPCP) and commercial ceramic particles (CCP) Turing the restart period. Effect of the C/N ratios and filter media. Bioresour Technol 100:5016–5020

    Article  CAS  Google Scholar 

  147. Han S, Yue Q, Yue M, Gao B, Li Q, Yu H, Zhao Y, Qi Y (2009) The characteristics and application of sludge-fly ash ceramic particles (SCP) as novel filter media. J Hazard Mater 171:809–814

    Article  CAS  Google Scholar 

  148. Pan S, Lin C, Tseng D (2003) Reusing sewage sludge as absorbent for copper removal from wastewater. Resour Conserv Recycl 39:79–90

    Article  Google Scholar 

  149. Bouzid J, Elouear Z, Ksibi M, Feki M, Montiel A (2008) A study on removal characteristics of copper from aqueous solution by sewage sludge and pomace ashes. J Hazard Mater 152:838–845

    Article  CAS  Google Scholar 

  150. Okada K, OnoY KY, Nakajima A, MacKenzie KJD (2007) Simultaneous uptake of ammonium and phosphate ions by compounds prepared from paper sludge ash. J Hazard Mater 141:622–629

    Article  CAS  Google Scholar 

  151. Wajama T, Haga M, Kuzawa K, Ishimoto H, Tamada O, Ito K, Nishiyama T, Downs RT, Rakovan JF (2006) Zeolite synthesis from paper sludge ash at low temperature (90o C) with addition of diatiomite. J Hazard Mater B 132:244–252

    Article  CAS  Google Scholar 

  152. Yang GCC, Yang T (1998) Synthesis of zeolites from municipal incinerator fly ash. J Hazard Mater 62:75–89

    Article  CAS  Google Scholar 

  153. Shim Y, Kim Y, Kong S, Rhee S, Lee W (2003) The adsorption characteristics of heavy metals by various particle sizes of MSWI bottom ash. Waste Manag 23:851–857

    Article  CAS  Google Scholar 

  154. Jin J, Chi L, Yan J (2010) Co-disposal of heavy metals containing waste water and medical waste incinerator fly ash by hydrothermal process with addition of sodium carbonate: a case study on Cu(II) removal. Water Air Soil Pollut. https://doi.org/10.1007/s 11270-009-0207-5

  155. Ahmaruzzaman M (2010) A review on the utilization of fly ash. Prog Energy Combust Sci. https://doi.org/10.1016/j.pecs.2009.11.003

  156. Smith KM, Fowler GD, Pulket S, Graham NJD (2009) Sewage sludge-based adsorbents: a review of their production, properties and use in water treatment applications. Water Res 43:2569–2594

    Article  CAS  Google Scholar 

  157. Baciocchi R, Polettini A, Pomi R, Prigiobbe V, von Zedwitz VN, Steinfeld A (2006) Sequestration by direct gas-solid carbonation of air pollution control (APC) residues. Energy Fuel 20:1933–1940

    Article  CAS  Google Scholar 

  158. Pertl A, Mostbauer P, Obersteiner G (2010) Climate balance of biogas upgrading systems. Waste Manag 30:92–99

    Article  CAS  Google Scholar 

  159. Ducom G, Radu-Tirnoveanu D, Pascual C, Benadda B, Germain P (2009) Biogas- municipal solid waste incinerator bottom ash interactions: sulphur compounds removal. J Hazard Mater 166:1102–1108

    Article  CAS  Google Scholar 

  160. Wang S, Wu H (2006) Environmental-benign utilization of fly ash as low-cost adsorbents. J Hazard Mater B 136:482–501

    Article  CAS  Google Scholar 

  161. Karatza D, Lancia A, Musmarra D (1998) Fly ash capture of mercuric chloride vapors from exhaust combustion ash. Environ Sci Technol 32:3999–4004

    Article  CAS  Google Scholar 

  162. Reijnders L, Huijbregts MAJ (2009) Biofuels for road transport. Springer, London

    Google Scholar 

  163. Capello C, Hellweg S, Hungerbühler K (2008) Environmental assessment of waste-solvent treatment options. J Ind Ecol 12:111–127

    Article  Google Scholar 

  164. Björklund A, Finnveden G (2005) Recycling revisited – life cycle comparisons of global warming impact and total energy use of waste management strategies. Resour Conserv Recycl 44:309–317

    Article  Google Scholar 

  165. Luteijn J (2009) No energy to waste. Thesis, Open University of the Netherlands, Heerlen

    Google Scholar 

  166. Allegrini E, Vandenbo C, Boldrin A, Astrup TF (2015) Life cycle assessment of resource recovery from municipal solid waste incineration bottom ash. Waste Manag 34:1627–1636

    Article  CAS  Google Scholar 

  167. Kleemann R, Chenoweth J, Clift R, Morse S, Pearce P, Saroj D (2017) Comparison of phosphorus recovery from incinerated sewage sludge ash (ISSA) and pyrolysis sewage sludge char (PSSC). Waste Manag 60:201–210

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Reijnders .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Reijnders, L. (2018). Hazardous Waste Incineration Ashes and Their Utilization. In: Meyers, R. (eds) Encyclopedia of Sustainability Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2493-6_97-3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2493-6_97-3

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-2493-6

  • Online ISBN: 978-1-4939-2493-6

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics