Encyclopedia of Sustainability Science and Technology

Living Edition
| Editors: Robert A. Meyers

Vitrification of Waste and Reuse of Waste-Derived Glass

  • Enrico Bernardo
  • Giovanni Scarinci
  • Paolo Colombo
Living reference work entry
DOI: https://doi.org/10.1007/978-1-4939-2493-6_96-3



Crystallization is the formation of crystals (i.e., a solid phase possessing short-, middle-, and long-range order) from a liquid or a solid. It occurs via a process consisting of two steps: nucleation and crystal growth. During nucleation, the structural units (atoms, ions, or molecules) spontaneously arrange themselves according to a regular geometry, which is specific for the crystal phase being formed. If this cluster, typically of the order of a few nanometers, has reached a critical size, which depends on the operating conditions (temperature, supersaturation, etc.), it becomes thermodynamically stable. The crystal growth is the subsequent growth of the nuclei that succeed in achieving the critical cluster size. In a crystal, the constituents are arranged in a defined and periodic manner (unit cell) that defines the crystal structure.


Durability is the ability of a substance (or a structure) to withstand the interaction with the surrounding...


Municipal Solid Waste Hazardous Waste Nucleate Agent Waste Glass Glass Cullet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


Primary Literature

  1. 1.
    Roth G, Weisenburger S (2000) Vitrification of high level liquid waste: glass chemistry, process chemistry and process technology. Nucl Eng Des 202:197–207CrossRefGoogle Scholar
  2. 2.
    Park J-K, Song M-J (1998) Feasibility study on vitrification of low-and intermediate-level radioactive waste from pressurized water reactors. Waste Manag 18:157–167CrossRefGoogle Scholar
  3. 3.
    Sakai S, Hiraoka M (2000) Municipal solid waste incinerator residue recycling by thermal processes. Waste Manag 20:249–258CrossRefGoogle Scholar
  4. 4.
    US Environmental Protection Agency (1994) 1994 EPA contaminated sediment management strategy, EPA 823-R-94-001. Office of Water, US Environmental Protection Agency, Washington, DCGoogle Scholar
  5. 5.
    SITE (Superfund Innovative Technology Evaluation) Emerging Technology Bulletin (1995) Ferro Corporation waste vitrification through electric melting, U.S. EPA/540/F-95/503. US Environmental Protection Agency, CincinnatiGoogle Scholar
  6. 6.
    Nechvatal TM, Jansen TJ (1996) Converting paper mill sludge or the like. US Patent 5,549,059. Minergy, AssigneeGoogle Scholar
  7. 7.
    Buelt JL, Oma KH, Eschbach EA (1994) Apparatus for in situ heating and vitrification. US Patent 5,316,411, 31 May 1994Google Scholar
  8. 8.
    U.S. Environmental Protection Agency (1995) Geosafe Corporation in situ vitrification. innovative technology evaluation report. Risk reduction engineering laboratory, Office of Research and Development. Report EPA/540/R-94/520Google Scholar
  9. 9.
    Poiroux R, Rollin M (1996) High temperature treatment of waste: from laboratories to the industrial stage. Pure Appl Chem 68:1035–1040CrossRefGoogle Scholar
  10. 10.
    Bingham PA, Hand RJ (2006) Vitrification of toxic waste: a brief review. Adv Appl Ceram 105:21–31CrossRefGoogle Scholar
  11. 11.
  12. 12.
    Marra JC, Jantzen CM (2004) Glass: an environmental protector. Am Ceram Soc Bull 83(11):12–16Google Scholar
  13. 13.
    Baehr W (1989) Industrial vitrification processes for high-level liquid waste solutions. IAEA Bull 31(4):47–51Google Scholar
  14. 14.
    Buelt JL, Chapman C (1978) Liquid fed ceramic melter. Doc. N° PNL-2735, UC 70, U.S. Department of EnergyGoogle Scholar
  15. 15.
    Jantzen C, Bickford DF, Brown KG, Cozzi AD et al (2000) Savannah river site waste vitrification projects initiated throughout the United States: disposal and recycle options. US Department of Energy, Office of Scientific and Technical Information, Oak RidgeGoogle Scholar
  16. 16.
    Roth G (1995) Atomwirtschaft 40(Jg3):174–177Google Scholar
  17. 17.
    Jouan A (2001) La vitrification des déchets, une contribution au respect de notre terre. Verre 7:20–27Google Scholar
  18. 18.
    US Environmental Protection Agency (1992) Handbook on vitrification technologies for treatment of hazardous and radioactive waste, report EPA/625/R-92/002. Office of Research and Development, Washington, DCGoogle Scholar
  19. 19.
    Buelt JL (1997) Molten glass processes. In: Freeman HM (ed) Standard handbook of hazardous waste treatment and disposal, 2nd edn. McGraw-Hill, New York, pp 45–77Google Scholar
  20. 20.
    Wakamura Y, Nakazato K (1994) Recent trend of ash management from MSW incineration facilities in Japan. In: National waste processing conference proceedings ASME 91–96Google Scholar
  21. 21.
    Richards RS, Plodinec MJ (1998) Overview of current and emerging waste vitrification technologies. In: Proceedings of the XVIII international congress on glass, San Francisco, 5–8 July 1998. Paper no. A7-I (CD ROM). The American Ceramic Society, WestervilleGoogle Scholar
  22. 22.
    Hollander H (1995) Vitrification of combustion ash residue for beneficial use. Solid Waste Technol 9:31–40Google Scholar
  23. 23.
    Terasawa Y, Yasuda S, Horizoe H, Sato J, Gotou Y (2001) Commercialization of MSW incineration system with direct ash melting by thermal cracking for high efficient generation of electricity, Mitsubishi Heavy Industries, Ltd. Tech Rev 38(2):82–86Google Scholar
  24. 24.
    Miyata H, Sadatsuka T (2005) Technology applicable to “Heat recovery facilities”, Sanki Engineering. J Solid Liq Waste 35(9):43–44. in JapaneseGoogle Scholar
  25. 25.
    Chapman C (1995) Earth melter. US Patent 5,443,618. Assignee Battelle Memorial Institute, RichlandGoogle Scholar
  26. 26.
    Chapman C (1993) State-of-the-art of waste glass melters. In: Varshneya AK, Bickford DF, Bihuniak PP (eds) Ceramic transactions, vol 29. American Ceramic Society, Westerville, pp 485–493Google Scholar
  27. 27.
    Park JK, Moon YP, Park BC, Song MJ, Ko KS, Cho JM (2001) Non-combustible waste vitrification with plasma torch melter. J Environ Sci Health A Tox/Hazard Subst Environ Eng 36:861–871CrossRefGoogle Scholar
  28. 28.
    Tendler M, Retberg P, Van Oost G (2005) Plasma based waste treatment and energy production. Plasma Phys Controlled Fusion 47:A219–A230CrossRefGoogle Scholar
  29. 29.
    Moustakas K, Fatta D, Malamis S, Haralambous K, Lozidou M (2005) Demonstration plasma gasification/vitrification system for effective hazardous waste treatment. J Hazard Mater 123:120–126CrossRefGoogle Scholar
  30. 30.
    Park HS, Kim SJ (2005) Analysis of a plasma melting system for incinerated ash. J Ind Eng Chem 11:657–665Google Scholar
  31. 31.
    Kushnikov VV et al (1995) Using an induction melter with a cold crucible for the immobilization of Plutonium. In: Plutonium stabilization and immobilization workshop proceedings, Washington, DC, pp 319–326Google Scholar
  32. 32.
    Jouan A, Boen R, Merlin S, Pujadas V (1997) New development for medium and low level waste vitrification. In: Nuthos-5, Beijing, 14–18 Apr 1997Google Scholar
  33. 33.
    Ojovan MI, Lee WE (2003) Self sustaining vitrification for immobilisation of radioactive and toxic waste. Glass Technol 44:218–224Google Scholar
  34. 34.
    Karlina OK, Varlakova GA, Ojovan MI, Tivanski VM, Klimov VL, Pavlova GY, Dmitriev SA (2001) Ash and soil conditioning using exothermic metallic compositions. Mater Res Soc Symp Proc 663:65–70CrossRefGoogle Scholar
  35. 35.
    Blackman WC (1993) Basic hazardous waste management. Lewis, Boca RatonGoogle Scholar
  36. 36.
    European Council (2000) European waste catalogue, Council Decision 2000/532/EC. Off J Eur Commun L226:3–24Google Scholar
  37. 37.
    Räbiger K, Keldenich K, Scheffer J (1995) Experience in operation of a pilot plant melting residual substances. Glastech Ber Glass Sci Technol 68:84–90Google Scholar
  38. 38.
    Frugifer P, Godon N, Vernaz E, Larché F (2002) Influence of composition variations on the initial alteration rate of vitrified domestic waste incineration fly-ash. Waste Manag 22:137–142CrossRefGoogle Scholar
  39. 39.
    Piepel G, Redgate T (1997) Mixture techniques for reducing the number of components applied for modeling waste glass sodium release. J Am Ceram Soc 80:3038–3044CrossRefGoogle Scholar
  40. 40.
    Besmann TM, Spear KE (2002) Thermochemical modeling of oxide glasses. J Am Ceram Soc 85:2887–2894CrossRefGoogle Scholar
  41. 41.
    Kim C-W, Choi K, Park J-K, Shin S-W, Song M-J (2001) Enthalpies of chromium oxide solution in soda lime borosilicate glass systems. J Am Ceram Soc 84:2987–2990CrossRefGoogle Scholar
  42. 42.
    Lapa N, Santos Oliveira JF, Camacho SL, Circeo LJ (2002) An ecotoxic risk assessment of residue materials produced by the plasma pyrolysis/vitrification (PP/V) process. Waste Manag 22:335–342CrossRefGoogle Scholar
  43. 43.
    Colombo P, Brusatin G, Bernardo E, Scarinci G (2003) Inertization and reuse of waste materials by vitrification and fabrication of glass-based products. Curr Opin Solid State Mater Sci 7:225–239CrossRefGoogle Scholar
  44. 44.
    Höland W, Beall G (2002) Glass-ceramic technology. American Ceramic Society, WestervilleGoogle Scholar
  45. 45.
    Davies MW, Kerrison B, Gross WE, Robson MJ, Witchall DF (1973) Slag ceramics: a glass ceramic from blast-furnace slag. J Iron Steel Inst 208:348–370Google Scholar
  46. 46.
    Nakamura S (1976) Crystallized glass article having a surface pattern. US patent 3,955,989, 11 May 1976Google Scholar
  47. 47.
    Fredericci C, Zanotto ED, Ziemath EC (2000) Crystallization mechanism and properties of a blast furnace slag glass. J Noncryst Solids 273:64–75CrossRefGoogle Scholar
  48. 48.
    Ferreira EB, Zanotto ED, Scudeller LAM (2002) Glass and glass-ceramic from basic oxygen furnace (BOF) slag. Glas Sci Technol 75:75–86Google Scholar
  49. 49.
    Karamanov A, Gutzow I, Chomakov I, Christov J, Kostov L (1994) Synthesis of wall-covering glass-ceramics from waste raw materials. Glastech Ber Glass Sci Technol 67:227–230Google Scholar
  50. 50.
    Gomes V, De Borba CDG, Riella HG (2002) Production and characterization of glass ceramics from steelwork slag. J Mater Sci 37:2581–2585CrossRefGoogle Scholar
  51. 51.
    Pelino M (2000) Recycling of zinc-hydrometallurgy waste in glass and glass ceramic materials. Waste Manag 20:561–568CrossRefGoogle Scholar
  52. 52.
    Karamanov A, Taglieri G, Pelino M (1999) Iron-rich sintered glass-ceramics from industrial waste. J Am Ceram Soc 82(11):3012–3016CrossRefGoogle Scholar
  53. 53.
    Pisciella P, Crisucci S, Karamanov A, Pelino M (2001) Chemical durability of glasses obtained by vitrification of industrial waste. Waste Manag 21:1–9CrossRefGoogle Scholar
  54. 54.
    Diaz C, Valle-Fuentes FJ, Zayas ME, Avalos-Borja M (1999) Cordierite glass-ceramic from geothermic waste. Am Ceram Soc Bull 78:62–64Google Scholar
  55. 55.
    Diaz C, Gracia H, MaE Z, Espinoza FJ, Valle-Fuentes FJ (2000) Producing optical glass with geothermal waste. Am Ceram Soc Bull 79:57–59Google Scholar
  56. 56.
    Ferreira C, Ribeiro A, Ottosen L (2003) Possible applications for municipal solid waste fly ash. J Hazard Mater B96:201–216CrossRefGoogle Scholar
  57. 57.
    Romero M, Rawlings RD, Rincón JM (1999) Development of a new glass-ceramic by means of controlled vitrification and crystallization of inorganic waste from urban incineration. J Eur Ceram Soc 19:2049–2058CrossRefGoogle Scholar
  58. 58.
    Boccaccini AR, Kopf M, Stumpfe W (1995) Glass-ceramics from filter dusts from waste incinerators. Ceram Int 21:231–235CrossRefGoogle Scholar
  59. 59.
    Cheng TW, Chen YS (2003) On formation of CaO-Al2O3-SiO2 glass-ceramics by vitrification of incinerator fly ash. Chemosphere 51:817–824CrossRefGoogle Scholar
  60. 60.
    Park YJ, Heo J (2002) Conversion to glass-ceramics from glasses made by MSW incinerator fly ash for recycling. Ceram Int 28:689–694CrossRefGoogle Scholar
  61. 61.
    Bernardo E, Scarinci G, Edme E, Michon U, Planty N (2009) Fast-sintered gehlenite glass-ceramics from plasma-vitrified municipal solid waste incinerator fly ashes. J Am Ceram Soc 92:528–530CrossRefGoogle Scholar
  62. 62.
    Romero M, Rawlings RD, Rincón JM (2000) Crystal nucleation and growth in glasses from inorganic waste from urban incineration. J Noncryst Solids 271:108–118CrossRefGoogle Scholar
  63. 63.
    Romero M, Rincon JM, Rawlings RD, Boccaccini AR (2001) Use of vitrified urban incinerator waste as raw material for production of sintered glass-ceramics. Mater Res Bull 36:383–395CrossRefGoogle Scholar
  64. 64.
    Park YJ, Heo J (2002) Vitrification of fly ash from municipal solid waste incinerator. J Hazard Mater B91:83–93CrossRefGoogle Scholar
  65. 65.
    Siwadamrongpong S, Koide M, Matusita K (2004) Prediction of chloride solubility in CaO-Al2O3-SiO2 glass systems. J Noncryst Solids 347:114–120CrossRefGoogle Scholar
  66. 66.
    Kim JM, Kim HS (2004) Glass-ceramic produced from a municipal waste incinerator fly ash with high Cl content. J Eur Ceram Soc 24:2373–2382CrossRefGoogle Scholar
  67. 67.
    Kavouras P, Komninou P, Chrissafis K, Kaimakamis G, Kokkou S (2003) Microstructural changes of processed vitrified solid waste products. J Eur Ceram Soc 23:1305–1311CrossRefGoogle Scholar
  68. 68.
    Karamanov A, Pelino M, Hreglich S (2003) Sintered glass-ceramics from municipal solid waste-incinerator fly ashes-part I: the influence of the heating rate on the sinter-crystallization. J Eur Ceram Soc 23:827–832CrossRefGoogle Scholar
  69. 69.
    Pelino M, Karamanov A, Pisciella P, Crisucci S, Zonetti D (2002) Vitrification of electric arc fornace dusts. Waste Manag 22:945–949CrossRefGoogle Scholar
  70. 70.
    Leroy C, Ferro MC, Monteiro RCC, Fernandes MHV (2001) Production of glass-ceramics from coal ashes. J Eur Ceram Soc 21:195–202CrossRefGoogle Scholar
  71. 71.
    Kavouras P, Kaimakamis G, Ioannidis TA, Kehagias T, Komninou P, Kokkou S, Pavlidou E, Antonopoulos I, Sofoniou M, Zouboulis A, Hadjiantoniou CP, Nouet G, Prakouras A, Karakostas T (2003) Vitrification of lead-rich solid ashes from incineration of hazardous industrial waste. Waste Manag 23:361–371CrossRefGoogle Scholar
  72. 72.
    Cheng TW (2003) Combined glassification of EAF dust and incinerator fly ash. Chemosphere 50:47–51CrossRefGoogle Scholar
  73. 73.
    Barbieri L, Ferrari AM, Lancellotti I, Leonelli C (2000) Crystallization of (Na2O-MgO)-CaO-Al2O3-SiO2 glassy systems formulated from waste products. J Am Ceram Soc 83:2515–2520CrossRefGoogle Scholar
  74. 74.
    Barbieri L, Corradi A, Lancellotti I (2000) Alkaline and alcaline-earth silicate glasses and glass-ceramics from municipal and industrial waste. J Eur Ceram Soc 20:2477–2483CrossRefGoogle Scholar
  75. 75.
    Öveçoğlu ML (1998) Microstructural characterization and physical properties of a slag-based glass-ceramic crystallized at 950 and 1100°C. J Eur Ceram Soc 18:161–168CrossRefGoogle Scholar
  76. 76.
    Barbieri L, Corradi A, Lancellotti I (2002) Thermal and chemical behavior of different glasses containing steel fly ash and their transformation into glass-ceramics. J Eur Ceram Soc 22:1759–1765CrossRefGoogle Scholar
  77. 77.
    Barbieri L, Lancellotti I, Manfredini T, Queralt I, Rincon JM, Romero M (1999) Design, obtainment and properties of glasses and glass-ceramics from coal fly ash. Fuel 78:271–276CrossRefGoogle Scholar
  78. 78.
    Bernardo E, Esposito L, Rambaldi E, Tucci A, Pontikes Y, Angelopoulos GN (2009) Sintered esseneite-wollastonite-plagioclase glass-ceramics from vitrified waste. J Eur Ceram Soc 29:2921–2927CrossRefGoogle Scholar
  79. 79.
    Boccaccini A, Rawlings R (2002) Waste not – producing glass-ceramics from waste materials. Mater World 10:16–18Google Scholar
  80. 80.
    Rincon JM, Romero M, Boccaccini AR (1999) Microstructural characterisation of a glass and a glass-ceramic obtained from municipal incinerator fly ash. J Mater Sci 34:4413–4423CrossRefGoogle Scholar
  81. 81.
    Boccaccini AR, Petitmermet M, Wintermantel E (1997) Glass-ceramics from municipal incinerator fly ash. Am Ceram Soc Bull 76:75–78Google Scholar
  82. 82.
    Erol M, Demirler U, Küçükbayrak S, Ersoy-Meriçboyu A, Öveçoğlu ML (2003) Characterization investigations of glass-ceramics developed from Seyitömer thermal power plant fly ash. J Eur Ceram Soc 23:757–763CrossRefGoogle Scholar
  83. 83.
    Francis AA, Rawlings RD, Boccaccini AR (2002) Glass-ceramics from mixtures of coal ash and soda lime glass by the petrurgic method. J Mater Sci Lett 21:975–980CrossRefGoogle Scholar
  84. 84.
    Amutha Rani D, Gomez E, Boccaccini AR, Hao L, Deegan D, Cheeseman CR (2008) Plasma treatment of air pollution control residues. Waste Manag 28:1254–1262CrossRefGoogle Scholar
  85. 85.
    Bernstein AG, Bonsembiante E, Brusatin G, Calzolari G, Colombo P, Dall’Igna R, Hreglich S, Scarinci G (2002) Inertization of hazardous dredging spoils. Waste Manag 22:865–869CrossRefGoogle Scholar
  86. 86.
    Brusatin G, Bernardo E, Andreola F, Barbieri L, Lancellotti I, Hreglich S (2005) Reutilization of waste inert glass from the disposal of polluted dredging spoils by the obtainment of ceramic products for tiles applications. J Mater Sci 40:5259–5264CrossRefGoogle Scholar
  87. 87.
    Suzuki S, Tanaka M, Kaneko T (1997) Glass-ceramic from sewage sludge ash. J Mater Sci 32:1775–1779CrossRefGoogle Scholar
  88. 88.
    Park YJ, So M, Heo J (2003) Crystalline phase control of glass ceramics obtained from sewage sludge fly ash. Ceram Int 29:223–227CrossRefGoogle Scholar
  89. 89.
    Toya T, Nakamura A, Kameshima Y, Nakajima A, Okada K (2007) Glass-ceramics prepared from sludge generated by a water purification plant. Ceram Int 33:573–577CrossRefGoogle Scholar
  90. 90.
    Bhat PN, Ghosh DK, Desai MVM (2002) Immobilisation of beryllium in solid waste (red-mud) by fixation and vitrification. Waste Manag 22:549–556CrossRefGoogle Scholar
  91. 91.
    Roberts D, Stuart JH (1989) Vitrification of asbestos waste. US Patent 4,820,328, 11 Apr 1989Google Scholar
  92. 92.
    Dall’Igna R, Falcone R, Hreglich S, Profilo B, Vallotto M, Cadore A, Grattieri W (2002) Production of mineral fertilizer glass from inertized asbestos containing waste. Riv Staz Sper Vetro 6:13–15Google Scholar
  93. 93.
    Bernardo E, Scarinci G, Hreglich S (2005) Foam glass as a way of recycling glasses from cathode ray tubes. Glas Sci Technol 78:7–11Google Scholar
  94. 94.
    Bernardo E, Cedro R, Florean M, Hreglich S (2007) Reutilization and stabilization of wastes by the production of glass foams. Ceram Int 33:963–968CrossRefGoogle Scholar
  95. 95.
    Bernardo E, Scarinci G, Bertuzzi P, Ercole P, Ramon L (2009) Recycling of waste glasses into glass and glass-ceramic foams. J Porous Mater 17(3):359–365CrossRefGoogle Scholar
  96. 96.
    Bernardo E, Andreola F, Barbieri L, Lancellotti I (2005) Sintered glass-ceramics and glass-ceramic matrix composites from CRT panel glass. J Am Ceram Soc 88:1886–1891CrossRefGoogle Scholar
  97. 97.
    Bernardo E, Castellan R, Hreglich S, Lancellotti I (2006) Sintered sanidine glass-ceramics from industrial wastes. J Eur Ceram Soc 26:3335–3341CrossRefGoogle Scholar
  98. 98.
    Tucci A, Esposito L, Rastelli E, Palmonari C, Rambaldi E (2004) Use of soda-lime scrap-glass as a fluxing agent in a porcelain stoneware tile mix. J Eur Ceram Soc 24:83–92CrossRefGoogle Scholar
  99. 99.
    Pontikes Y, Christogerou A, Angelopoulos G, Rambaldi E, Esposito L, Tucci A (2005) Use of soda-lime-silica scrap glass in the traditional ceramic industry. Glass Technol 46:200–207Google Scholar
  100. 100.
    Tarvornpanich T, Souza GP, Lee WE (2005) Microstructural evolution on firing soda-lime-silica glass fluxed whitewares. J Am Ceram Soc 88:1302–1308CrossRefGoogle Scholar
  101. 101.
    Tucci A, Rambaldi E, Esposito L (2006) Use of scrap glass as raw materials for porcelain stoneware tiles. Adv Appl Ceram 105:40–45CrossRefGoogle Scholar
  102. 102.
    Raimondo M, Zanelli C, Matteucci F, Guarini G, Dondi M, Labrincha JA (2007) Effect of waste glass (TV/PC cathodic tube and screen) on technological properties and sintering behaviour of porcelain stoneware tiles. Ceram Int 33:615–623CrossRefGoogle Scholar
  103. 103.
    Rawlings RD, Wu JP, Boccaccini AR (2006) Glass-ceramics: their production from wastes – a review. J Mater Sci 41:733–761CrossRefGoogle Scholar
  104. 104.
    Bernardo E, Esposito L, Rambaldi E, Tucci A (2009) Glass-based stoneware as a promising route for the recycling of waste glasses. Adv Appl Ceram 108:2–8CrossRefGoogle Scholar
  105. 105.
  106. 106.
    Morimoto N et al (1988) Nomenclature of pyroxenes. Am Mineral 73:1123–1133Google Scholar
  107. 107.
    Peng F, Liang K, Hu A (2005) Nano-crystal glass-ceramics obtained from high alumina coal fly ash. Fuel 84:341–346CrossRefGoogle Scholar
  108. 108.
    Karamanov A, Cantalini C, Pelino M, Hreglich S (1999) Kinetics of phase formation in jarosite glass-ceramic. J Eur Ceram Soc 19:527–533CrossRefGoogle Scholar
  109. 109.
    Karamanov A, Pelino M (2001) Crystallization phenomena in iron-rich glasses. J Noncryst Solids 281:139–151CrossRefGoogle Scholar
  110. 110.
    Bloomer PE, Feng X, Chantaraprachoom N, Gong M, McCready DE (1999) Effect of crystallization, redox, and waste loading on the properties of several glassy waste forms. J Am Ceram Soc 11:2999–3011Google Scholar
  111. 111.
    Gutzow I, Pascova R, Karamanov A, Schmelzer J (1998) The kinetics of surface induced sinter-crystallization and the formation of glass-ceramic materials. J Mater Sci 33:5265–5273CrossRefGoogle Scholar
  112. 112.
    Müller R, Zanotto ED, Fokin VM (2000) Surface crystallization of silicate glasses: nucleation sites and kinetics. J Noncryst Solids 274:208–231CrossRefGoogle Scholar
  113. 113.
    Prado MO, Zanotto ED (2002) Glass sintering with concurrent crystallization. C R Chimie 5:773–786CrossRefGoogle Scholar
  114. 114.
    Francis AA, Rawlings RD, Sweeney R, Boccaccini AR (2004) Crystallization kinetic of glass particles prepared from a mixture of coal ash and soda-lime cullet glass. J Noncryst Solids 333:187–193CrossRefGoogle Scholar
  115. 115.
    Hernandez-Crespo MS, Romero M, Rincon JM (2006) Nucleation and crystal growth of glasses produced by a generic plasma arc-process. J Eur Ceram Soc 26:1679–1685CrossRefGoogle Scholar
  116. 116.
    Bernardo E (2008) Fast Sinter-crystallization of a glass from waste materials. J Noncryst Solids 354:3486–3490CrossRefGoogle Scholar
  117. 117.
    Karamanov A, Pisciella P, Cantalini C, Pelino M (2000) Influence of Fe3+/Fe2+ ratio on the crystallization of iron-rich glasses made with industrial waste. J Am Ceram Soc 83:3153–3157CrossRefGoogle Scholar
  118. 118.
    Karamanov A, Aloisi M, Pelino M (2005) Sintering behaviour of a glass obtained from MSWI ash. J Eur Ceram Soc 25:1531–1540CrossRefGoogle Scholar
  119. 119.
    Ray A, Tiwari AN (2001) Compaction and sintering behaviour of glass-alumina composites. Mater Chem Phys 67:220–225CrossRefGoogle Scholar
  120. 120.
    Romero M, Rincon JM (1999) Surface and bulk crystallization of glass-ceramic in the Na2O-CaO-ZnO-PbO-Fe2O3-Al2O3-SiO2 system derived from a goethite waste. J Am Ceram Soc 82:1313–1317CrossRefGoogle Scholar
  121. 121.
    Francis AA, Rawlings RD, Sweeney R, Boccaccini AR (2002) Processing of coal ash into glass ceramic products by powder technology and sintering. Glass Technol 43:58–62Google Scholar
  122. 122.
    Fidancevska E, Mangutova B, Milosevski D, Milosevski M, Bossert J (2003) Sci Sinter 35:85–91CrossRefGoogle Scholar
  123. 123.
    Scarinci G, Brusatin G, Barbieri L, Corradi A, Lancellotti I, Colombo P, Hreglich S, Dall’Igna R (2000) Vitrification of industrial and natural waste with production of glass fibres. J Eur Ceram Soc 20:2485–2490CrossRefGoogle Scholar
  124. 124.
    Hreglich S, Cioffi F (2009) Continuous glass fibres from waste and their application in reinforced materials. Adv Appl Ceram 108:22–26CrossRefGoogle Scholar
  125. 125.
    Hreglich S, Falcone R, Vallotto M (2001) The recycling of end of life panel glass from TV sets in glass fibres and ceramic productions. In: Dhir RK, Limbachiya MC, Dyer TD (eds) Recycling and reuse of glass cullet. Thomas Telford, London, pp 123–134Google Scholar
  126. 126.
    Marabini AM, Plescia P, Maccari D, Burragato F, Pelino M (1998) New materials from industrial and mining waste: glass-ceramics and glass- and rock-wool fibre. Int J Miner Process 53:121–134CrossRefGoogle Scholar
  127. 127.
    Scarinci G, Brusatin G, Bernardo E (2005) Production technology of glass foams. In: Scheffler M, Colombo P (eds) Cellular ceramics: structure, manufacturing, properties and applications. Wiley-VCH, WeinheimGoogle Scholar
  128. 128.
    Méar F, Yot P, Viennois R, Ribes M (2007) Mechanical behaviour and thermal and electrical properties of foam glass. Ceram Int 33:543–550CrossRefGoogle Scholar
  129. 129.
    Brusatin G, Scarinci G, Zampieri L, Colombo P (2002) Foam glass from cullet. Glass Mach Plant Accessory 1:108–110Google Scholar
  130. 130.
    Fernandes HR, Tulyaganov DU, Ferreira JMF (2009) Production and characterisation of glass ceramic foams from recycled raw materials. Adv Appl Ceram 108:9–13CrossRefGoogle Scholar
  131. 131.
    Tulyaganov DU, Fernandes HR, Agathopoulos S, Ferreira JMF (2006) Preparation and characterization of high compressive strength foams from sheet glass. J Porous Mater 13:133–139CrossRefGoogle Scholar
  132. 132.
    Wu JP, Boccaccini AR, Lee PD, Kershaw MJ, Rawlings RD (2006) Glass ceramic foams from coal ash and waste glass: production and characterisation. Adv Appl Ceram 105:32–39CrossRefGoogle Scholar
  133. 133.
    Bernardo E (2007) Micro- and macro-cellular sintered glass-ceramics from wastes. J Eur Ceram Soc 27:2415–2422CrossRefGoogle Scholar
  134. 134.
    Boccaccini AR, Bücker M, Bossert J, Marszalek K (1997) Glass matrix composites from coal fly ash and waste glass. Waste Manag 17:39–45CrossRefGoogle Scholar
  135. 135.
    Ferraris M, Salvo M, Smeacetto F, Augier L, Barbieri L, Corradi A, Lancellotti I (2001) Glass matrix composites from solid waste materials. J Eur Ceram Soc 21:453–460CrossRefGoogle Scholar
  136. 136.
    Appendino P, Ferraris M, Matekovits I, Salvo M (2004) Production of glass-ceramic bodies from the bottom ashes of municipal solid waste incinerators. J Eur Ceram Soc 24:803–810CrossRefGoogle Scholar
  137. 137.
    Aloisi M, Karamanov A, Taglieri G, Ferrante F, Pelino M (2006) Sintered glass ceramic composites from vitrified municipal solid waste bottom ashes. J Hazard Mater 137:138–143CrossRefGoogle Scholar
  138. 138.
    Bernardo E, Scarinci G, Hreglich S (2005) Development and mechanical characterization of Al2O3 platelet-reinforced glass matrix composites obtained from glasses coming from dismantled cathode ray tubes. J Eur Ceram Soc 255:1541–1550CrossRefGoogle Scholar
  139. 139.
    Bernardo E, Castellan R, Hreglich S (2007) Al2O3-platelet reinforced glass matrix composites from a mixture of wastes. J Mater Sci 42:2706–2711CrossRefGoogle Scholar
  140. 140.
    Rozenstrauha I, Cimdins R, Berzina L, Bajare D, Bossert J, Boccaccini AR (2002) Sintered glass-ceramic matrix composites made from Latvian silicate wastes. Glas Sci Technol 75:132–139Google Scholar
  141. 141.
    Saccani A, Sandrolini F, Barbieri L, Corradi A, Lancellotti I (2001) Structural studies and electrical properties of recycled glasses from glass and incinerator waste. J Mater Sci 36:2173–2177CrossRefGoogle Scholar
  142. 142.
    Barba MF, Callejas P, Arabe JO, Ajò D (1998) Characterization of two frit ceramics materials in low cost fertilizers. J Eur Ceram Soc 18:1313–1317CrossRefGoogle Scholar
  143. 143.
    Jin W, Meyer C, Baxter S (2000) Glascrete-concrete with glass aggregate. ACI Mater J 97:208–213Google Scholar
  144. 144.
    Schroeder RL (1994) The use of recycled materials in highway construction. Public Roads 58:32–41Google Scholar
  145. 145.
    Su N, Chen JS (2002) Engineering properties of asphalt concrete made with recycled glass. Resour Conserv Recycl 35:259–274CrossRefGoogle Scholar
  146. 146.
    Gao Z, Drummond CH (1999) Thermal analysis of nucleation and growth of crystalline phases in vitrified industrial waste. J Am Ceram Soc 82:561–565CrossRefGoogle Scholar
  147. 147.
    Romero M, Rincon JM, Acosta A (2002) Effect of iron oxide content on the crystallisation of a diopside glass-ceramic glaze. J Eur Ceram Soc 22:883–890CrossRefGoogle Scholar
  148. 148.
    Zubekhin AP, Zhabrev VA, Kondyurin AM (1993) Glass formation and crystallization in the SiO2-CaO-MgO-Fe2O3-MnO2-K2O-Na2O for synthesizing heat resistant coatings. Steklo i Keramica 5:26–28Google Scholar
  149. 149.
    Barbieri L, Corradi A, Lancellotti I, Manfredini T (2002) Use of municipal incinerator bottom ash as sintering promoter. Waste Manag 22:859–863CrossRefGoogle Scholar
  150. 150.
    Bernardo E, Esposito L, Rambaldi E, Tucci A, Hreglich S (2008) Recycle of waste glass into “glass-ceramic stoneware”. J Am Ceram Soc 91:2156–2162CrossRefGoogle Scholar

Books and Reviews

  1. Gomez E, Rani DA, Cheeseman CR, Deegan D, Wise M, Boccaccini AR (2008) Thermal plasma technology for the treatment of wastes: a critical review. J Hazard Mater 161:614–626CrossRefGoogle Scholar
  2. Oh CO (2001) Hazardous and radioactive waste treatment technology. CRC Press, Boca RatonCrossRefGoogle Scholar
  3. Scholze H (1991) Glass: nature, structure and properties. Springer, New YorkCrossRefGoogle Scholar
  4. Strnad Z (1986) Glass-ceramic materials. Elsevier, AmsterdamGoogle Scholar
  5. Vesilind PA, Worrell W, Reinhart D (2002) Solid waste engineering. Rooks/Cole, Pacific GroveGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Enrico Bernardo
    • 1
  • Giovanni Scarinci
    • 2
  • Paolo Colombo
    • 1
  1. 1.Department of Industrial EngineeringUniversity of PadovaPadovaItaly
  2. 2.Department of Mechanical Engineering – Materials DivisionUniversity of PadovaPadovaItaly