Encyclopedia of Sustainability Science and Technology

Living Edition
| Editors: Robert A. Meyers

Biohydrogen Production from Agricultural Residues

  • Emmanuel Koukios
  • Ioannis (John) A. Panagiotopoulos
Living reference work entry
DOI: https://doi.org/10.1007/978-1-4939-2493-6_949-1

Glossary

Cellulose

Homopolysaccharide composed of D-glucose units linked to each other via β-(1,4) glycosidic bonds

Dark fermentation

Biological hydrogen production process when the organic compounds constitute the sole carbon and energy source providing metabolic energy

Fermentability

Tendency of a pretreated raw material to improve or inhibit fermentation.

Hemicelluloses

Heteropolysaccharides composed of different sugar units, the major hemicelluloses being xylans, arabinans, mannans and galactans.

Hydrogen productivity

mmol hydrogen per L culture medium and h of fermentation

Hydrogen yield

Molar amount of hydrogen divided by the molar amount of consumed hexose equivalent (mol hydrogen/mol hexose)

Inhibitors

Compounds which have toxic effects on the fermenting microorganisms, thus decreasing hydrogen yield and productivity

Pretreatment

Process used for the release of fermentable sugars from biomass - typically followed by enzymatic hydrolysis

Definition of the Subject

Biological...

This is a preview of subscription content, log in to check access.

Bibliography

Primary Literature

  1. 1.
    Thauer RK, Jungermann K, Decker K (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 41(3):100–180Google Scholar
  2. 2.
    Solomon BO, Zeng AR, Biebl H, Schlieker H, Posten C, Deckwer WD (1995) Comparison of the energetic efficiencies of hydrogen and oxychemicals formation in Klebsiella Pneumoniae and Clostridium butyricum during anaerobic growth on glycerol. J Biotechnol 39:107–117CrossRefGoogle Scholar
  3. 3.
    Pattra S, Sangyoka S, Boonmee M, Reungsang A (2008) Bio-hydrogen production from the fermentation of sugarcane bagasse hydrolysate by Clostridium butyricum. Int J Hydrog Energy 33(19):5256–5265CrossRefGoogle Scholar
  4. 4.
    Chong ML, Raha AR, Shirai Y, Hassan MA (2009) Biohydrogen production by Clostridium butyricum EB6 from palm oil mill effluent. Int J Hydrog Energy 34(2):764–771CrossRefGoogle Scholar
  5. 5.
    Lin P-Y, Whang L-M, Y-R W, Ren W-J, Hsiao C-J, Li S-L, Chang J-S (2007) Biological hydrogen production of the genus Clostridium: metabolic study and mathematical model simulation. Int J Hydrog Energy 32(12):1728–1735CrossRefGoogle Scholar
  6. 6.
    Skonieczny MT, Yargeau V (2009) Biohydrogen production from wastewater by Clostridium beijerinckii: Effect of pH and substrate concentration. Int J Hydrog Energy 34(8):3288–3294CrossRefGoogle Scholar
  7. 7.
    Jo HJ, Lee DS, Park D, Park JM (2008) Biological hydrogen production by immobilized cells of Clostridium tyrobutyricum JM1 isolated from food waste treatment process. Bioresour Technol 99(14):6666–6672CrossRefGoogle Scholar
  8. 8.
    Mitchell RJ, Kim J-S, Jeon B-S, Sang B-I (2009) Continuous hydrogen and butyric acid fermentation by immobilized Clostridium tyrobutyricum ATCC 25755: Effects of the glucose concentration and hydraulic retention time. Bioresour Technol 100(21):5352–5355CrossRefGoogle Scholar
  9. 9.
    Levin DB, Islam R, Cicek N, Sparling R (2006) Hydrogen production by Clostridium thermocellum 27405 from cellulosic biomass substrates. Int J Hydrog Energy 31(11):1496–1503CrossRefGoogle Scholar
  10. 10.
    Evvyernie D, Yamazaki S, Morimoto K, Karita S, Kimura T, Sakka K, Ohmiya K (2000) Identification and characterization of Clostridium paraputrificum M-21, a chitinolytic, mesophilic and hydrogen producing bacterium. J Biosci Bioeng 89(6):596–601CrossRefGoogle Scholar
  11. 11.
    Tanisho S, Ishiwata W (1994) Continuous hydrogen production from molasses by the bacterium Enterobacter aerogenes. Int J Hydrog Energy 19(10):807–812CrossRefGoogle Scholar
  12. 12.
    Fabiano B, Perego P (2002) Thermodynamic study and optimization of hydrogen production by Enterobacter aerogenes. Int J Hydrog Energy 27(2):149–156CrossRefGoogle Scholar
  13. 13.
    Kumar N, Das D (2000) Enhancement of hydrogen production by Enterobacter cloacae IIT-BT 08. Process Biochem 35(6):589–593CrossRefGoogle Scholar
  14. 14.
    VanFossen AL, Verhaart MRA, Kengen SMW, Kelly RM (2009) Carbohydrate utilization patterns for the extremely thermophilic bacterium Caldicellulosiruptor saccharolyticus reveal broad growth substrate preferences. Appl Environ Microbiol 75(24):7718–7724CrossRefGoogle Scholar
  15. 15.
    Mars AE, Veuskens T, Budde MAW, van Doeveren PFNM, Lips SJ, Bakker RR, de Vrije T, Claassen PAM (2010) Biohydrogen production from untreated and hydrolyzed potato steam peels by the extreme thermophiles Caldicellulosiruptor saccharolyticus and Thermotoga neapolitana. Int J Hydrog Energy 35(15):7730–7737CrossRefGoogle Scholar
  16. 16.
    Panagiotopoulos IA, Bakker RR, de Vrije T, Claassen PAM, Koukios EG (2012) Dilute-acid pretreatment of barley straw for biological hydrogen production using Caldicellulosiruptor saccharolyticus. Int J Hydrog Energy 37(16):11727–11734CrossRefGoogle Scholar
  17. 17.
    Willquist K, van Niel EWJ (2012) Growth and hydrogen production characteristics of Caldicellulosiruptor saccharolyticus on chemically defined minimal media. Int J Hydrog Energy 37(6):4925–4929CrossRefGoogle Scholar
  18. 18.
    O-Thong S, Prasertsan P, Karakashev D, Angelidaki I (2008) Thermophilic fermentative hydrogen production by the newly isolated Thermoanaerobacterium thermosaccharolyticum PSU-2. Int J Hydrog Energy 33(4):1204–1214CrossRefGoogle Scholar
  19. 19.
    Cao G-L, Ren N-Q, Wang A-J, Guo W-Q, Yao J, Feng Y-J, Zhao Q-L (2010) Statistical optimization of culture condition for enhanced hydrogen production by Thermoanaerobacterium thermosaccharolyticum W16. Bioresour Technol 101(6):2053–2058CrossRefGoogle Scholar
  20. 20.
    de Vrije T, Budde MAW, Lips SJ, Bakker RR, Mars AE, Claassen PAM (2010) Hydrogen production from carrot pulp by the extreme thermophiles Caldicellulosiruptor saccharolyticus and Thermotoga neapolitana. Int J Hydrog Energy 35(15):13206–13213CrossRefGoogle Scholar
  21. 21.
    Nguyen T-AD, Kim K-R, Kim MS, Sim SJ (2010) Thermophilic hydrogen fermentation from Korean rice straw by Thermotoga neapolitana. Int J Hydrog Energy 35(24):13392–13398CrossRefGoogle Scholar
  22. 22.
    Eriksen NT, Riis ML, Holm NK, Iversen N (2011) H2 synthesis from pentoses and biomass in Thermotoga spp. Biotechnol Lett 33(2):293–300CrossRefGoogle Scholar
  23. 23.
    Nogales J, Gudmundsson S, Thiele I (2012) An in silico re-design of the metabolism in Thermotoga maritima for increased biohydrogen production. Int J Hydrog Energy 37(17):12205–12218CrossRefGoogle Scholar
  24. 24.
    van Niel EWJ, Claassen PAΜ, Stams AJM (2003) Substrate and product inhibition of hydrogen production by the extreme thermophile, Caldicellulosiruptor saccharolyticus. Biotechnol Bioeng 81(3):255–262CrossRefGoogle Scholar
  25. 25.
    Zeidan AA, van Niel EWJ (2010) A quantitative analysis of hydrogen production efficiency of the extreme thermophile Caldicellulosiruptor owensensis OLT. Int J Hydrog Energy 35(3):1128–1137CrossRefGoogle Scholar
  26. 26.
    Kongjan P, O-Thong S, Kotay M, Min B, Angelidaki I (2010) Biohydrogen production from wheat straw hydrolysate by dark fermentation using extreme thermophilic mixed culture. Biotechnol Bioeng 105(5):899–908Google Scholar
  27. 27.
    Panagiotopoulos IA, Bakker RR, de Vrije T, Claassen PAM, Koukios EG (2013) Integration of first and second generation biofuels: Fermentative hydrogen production from wheat grain and straw. Bioresour Technol 128:345–350CrossRefGoogle Scholar
  28. 28.
    Özgür E, Peksel B (2013) Biohydrogen production from barley straw hydrolysate through sequential dark and photofermentation. J Clean Prod 52:14–20CrossRefGoogle Scholar
  29. 29.
    Datar R, Huang J, Maness P-C, Mohagheghi A, Czernik S, Chornet E (2007) Hydrogen production from the fermentation of corn stover biomass pretreated with a steam-explosion process. Int J Hydrog Energy 32(8):932–939CrossRefGoogle Scholar
  30. 30.
    Cao G, Ren N, Wang A, Lee D-J, Guo W, Liu B, Feng Y, Zhao Q (2009) Acid hydrolysis of corn stover for biohydrogen production using Thermoanaerobacterium thermosaccharolyticum W16. Int J Hydrog Energy 34(17):7182–7188CrossRefGoogle Scholar
  31. 31.
    Pan C, Zhang S, Fan Y, Hou H (2010) Bioconversion of corncob to hydrogen using anaerobic mixed microflora. Int J Hydrog Energy 35(7):2663–2669CrossRefGoogle Scholar
  32. 32.
    Lo Y-C, W-C L, Chen C-Y, Chang J-S (2010) Dark fermentative hydrogen production from enzymatic hydrolysate of xylan and pretreated rice straw by Clostridium butyricum CGS5. Bioresour Technol 101(15):5885–5891CrossRefGoogle Scholar
  33. 33.
    de Vrije T, Bakker RR, Budde MAW, Lai MH, Mars AE, Claassen PAM (2009) Efficient hydrogen production from the lignocellulosic energy crop Miscanthus by the extreme thermophilic bacteria Caldicellulosiruptor saccharolyticus and Thermotoga neapolitana. Biotechnol Biofuels 2:12CrossRefGoogle Scholar
  34. 34.
    Panagiotopoulos IA, Bakker RR, de Vrije T, Koukios EG, Claassen PAM (2010) Pretreatment of sweet sorghum bagasse for hydrogen production by Caldicellulosiruptor saccharolyticus. Int J Hydrog Energy 35(15):7738–7747CrossRefGoogle Scholar
  35. 35.
    Özgür E, Mars AE, Peksel B, Louwerse A, Yücel M, Gündüz U, Claassen PAM, Eroğlu I (2010) Biohydrogen production from beet molasses by sequential dark and photofermentation. Int J Hydrog Energy 35(2):511–517CrossRefGoogle Scholar
  36. 36.
    Panagiotopoulos IA, Pasias S, Bakker RR, de Vrije T, Papayannakos N, Claassen PAM, Koukios EG (2013) Biodiesel and biohydrogen production from cotton-seed cake in a biorefinery concept. Bioresour Technol 136:78–86CrossRefGoogle Scholar
  37. 37.
    Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673–686CrossRefGoogle Scholar
  38. 38.
    Brownell HH, EKC Y, Saddler JN (1986) Steam-explosion pretreatment of wood: Effect of chip size, acid, moisture content and pressure drop. Biotechnol Bioeng 28(6):792–801CrossRefGoogle Scholar
  39. 39.
    Grous WR, Converse AO, Grethlein HE (1986) Effect of steam explosion pretreatment on pore size and enzymatic hydrolysis of poplar. Enzym Microb Technol 8:274–280CrossRefGoogle Scholar
  40. 40.
    Ballesteros I, Negro MJ, Oliva JM, Cabañas A, Manzanares P, Ballesteros M (2006) Ethanol production from steam-explosion pretreated wheat straw. Appl Biochem Biotechnol 129–132:496–508CrossRefGoogle Scholar
  41. 41.
    Mackie KL, Brownell HH, West KL, Saddler JN (1985) Effect of sulphur dioxide and sulphuric acid on steam explosion of aspenwood. J Wood Chem Technol 5:405–425CrossRefGoogle Scholar
  42. 42.
    Bura R, Chandra R, Saddler J (2009) Influence of xylan on the enzymatic hydrolysis of steam-pretreated corn stover and hybrid poplar. Biotechnol Prog 25:315–322CrossRefGoogle Scholar
  43. 43.
    Li J, Henriksson G, Gellerstedt G (2007) Lignin depolymerization/repolymerization and its critical role for delignification of aspen wood by steam explosion. Bioresour Technol 98:3061–3068CrossRefGoogle Scholar
  44. 44.
    Shevchenko SM, Beatson RP, Saddler JN (1999) The nature of lignin from steam explosion/enzymatic hydrolysis of softwood. Structural features and possible uses. Appl Biochem Biotechnol 77–79:867–876CrossRefGoogle Scholar
  45. 45.
    Li D, Chen H (2007) Biological hydrogen production from steam exploded straw by simultaneous saccharification and fermentation. Int J Hydrog Energy 32(12):1742–1748CrossRefGoogle Scholar
  46. 46.
    Lu Y, Lai Q, Zhang C, Zhao H, Ma K, Zhao X, Chen H, Liu D, Xing X-H (2009) Characteristics of hydrogen and methane production from cornstalks by an augmented two- or three-stage anaerobic fermentation process. Bioresour Technol 100(12):2889–2895CrossRefGoogle Scholar
  47. 47.
    Zeidan AA, van Niel EWJ (2009) Developing a thermophilic hydrogen producing co-culture for efficient utilization of mixed sugars. Int J Hydrog Energy 34(10):4524–4528CrossRefGoogle Scholar
  48. 48.
    Larsson S, Palmqvist E, Hahn-Hägerdal B, Tengborg C, Stenberg K, Zacchi G, Nilvebrant N-O (1999) The generation of fermentation inhibitors during dilute acid hydrolysis of softwood. Enzym Microb Technol 24:151–159CrossRefGoogle Scholar
  49. 49.
    Palmqvist E, Hahn-Hägerdal B (2000) Fermentation of lignocellulosic hydrolysates. II inhibitors and mechanisms of inhibition. Bioresour Technol 74:25–33CrossRefGoogle Scholar
  50. 50.
    Panagiotopoulos IA, Bakker RR, de Vrije T, van Niel EWJ, Koukios EG, Claassen PAM (2011) Exploring critical factors for fermentative hydrogen production from various types of lignocellulosic biomass. J Jpn I Energy 90:363–368CrossRefGoogle Scholar
  51. 51.
    de Vrije T, de Haas GG, Tan GB, Keijsers ERP, Claassen PAM (2002) Pretreatment of Miscanthus for hydrogen production by Thermotoga elfıi. Int J Hydrog Energy 27:1381–1390CrossRefGoogle Scholar
  52. 52.
    Dale BE, Moreira MJ (1982) A freeze-explosion technique for increasing cellulose hydrolysis. Biotechnol Bioeng Symp 12:31–43Google Scholar
  53. 53.
    Teymouri F, Laureano-Peres L, Alizadeh H, Dale BE (2005) Optimization of the ammonia fiber explosion (AFEX) treatment parameters for enzymatic hydrolysis of corn stover. Bioresour Technol 96(18):2014–2018CrossRefGoogle Scholar
  54. 54.
    McDonough TJ (1993) The chemistry of organosolv delignification. TAPPI J 76:186–193Google Scholar
  55. 55.
    Sannigrahi P, Ragauskas AJ, Miller SJ (2010) Lignin structural modifications resulting from ethanol organosolv treatment of loblolly pine. Energy Fuel 24:683–689CrossRefGoogle Scholar
  56. 56.
    Wasserscheid P, Keim W (2000) Ionic liquids – new “solutions” for transition metal catalyst. Angew Chem Int Ed 39:3773–3789CrossRefGoogle Scholar
  57. 57.
    Datta S, Holmes B, Park JI, Chen Z, Dibble DC, Hadi M, Blanch HW, Simmons BA, Sapra R (2010) Ionic liquid tolerant hyperthermophilic cellulases for biomass pretreatment and hydrolysis. Green Chem 12(2):338–345CrossRefGoogle Scholar
  58. 58.
    Panagiotopoulos IA, Bakker RR, Budde MAW, de Vrije T, Claassen PAM, Koukios EG (2009) Fermentative hydrogen production from pretreated biomass: a comparative study. Bioresour Technol 100:6331–6338CrossRefGoogle Scholar
  59. 59.
    Popoff T, Theander O (1976) Formation of aromatic compounds from carbohydrates – part III. Reaction of D-glucose and D-fructose in slightly acidic, aqueous solution. A Chem Scand B 30:397–402CrossRefGoogle Scholar
  60. 60.
    Jönsson LJ, Alriksson B, Nilvebrant NO (2013) Bioconversion of lignocellulose: inhibitors and detoxification. Biotechnol Biofuels 6:16CrossRefGoogle Scholar

Books and Reviews

  1. Claassen PAM, van Lier JB, Contreras AML, van Niel EWJ, Sijtsma L, Stams AJM, de Vries SS, Weusthuis RA (1999) Utilisation of biomass for the supply of energy carriers. Appl Microbiol Biotechnol 52(6):741–755CrossRefGoogle Scholar
  2. Galbe M, Zacchi G (2012) Pretreatment: the key to efficient utilization of lignocellulosic materials. Biomass Bioenergy 46:70–78CrossRefGoogle Scholar
  3. Kengen SWM, Goorissen HP, Verhaart M, van Niel EWJ, Claassen PAM, Stams AJM (2009) Biological hydrogen production by anaerobic microorganisms. In: Soetaert W, Vandamme EJ (eds) Biofuels. John Wiley and Sons, Chichester, pp 197–221CrossRefGoogle Scholar
  4. Levin D, Pitt L, Love M (2004) Biohydrogen production: prospect and limitations to practical application. Int J Hydrog Energy 29(2):173–185CrossRefGoogle Scholar
  5. Ragauskas AJ, Beckham GT, Biddy MJ, Chandra R, Chen F, Davis MF, Davison BH, Dixon RA, Gilna P, Keller M, Langan P, Naskar AK, Saddler JN, Tschaplinski TJ, Tuskan GA, Wyman CE (2014) Lignin valorization: improving lignin processing in the biorefinery. Science 344(6185):1246843CrossRefGoogle Scholar
  6. Stephanopoulos G (2007) Challenges in engineering microbes for biofuels production. Science 315(5813):801–804CrossRefGoogle Scholar
  7. Stolten D (ed) (2010) Hydrogen and fuel cells – fundamentals, technologies and applications. Wiley–VCH, WeinheimGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2018

Authors and Affiliations

  • Emmanuel Koukios
    • 1
  • Ioannis (John) A. Panagiotopoulos
    • 2
  1. 1.Department of Synthesis and Development of Industrial ProcessesSchool of Chemical Engineering, National Technical University of AthensAthensGreece
  2. 2.Elin Biofuels SAAthensGreece

Section editors and affiliations

  • Timothy E. Lipman
    • 1
  1. 1.TSRCUniversity of California BerkeleyBerkeleyUSA