Skip to main content

Ocean Thermal Energy Conversion

  • Living reference work entry
  • First Online:
Encyclopedia of Sustainability Science and Technology
  • 175 Accesses

Glossary

Baseload plant:

An energy plant devoted to the production of baseload supply. Baseload plants typically run at all times through the year (24/7) except in the case of repairs or scheduled maintenance.

Baseload:

The minimum amount of power that a utility must make available to its customers.

CWP:

Cold water pipe, the pipe used to transport deep ocean water to the OTEC condenser.

Draught (Draft):

The depth of a ship’s keel below the water surface.

Euphotic zone:

The upper layer of the ocean in which there is sufficient light for photosynthesis.

Externalities:

The costs generated by the production of electricity that are not included in the price charged to consumers. These costs manifest themselves through changes in the environment and other societal costs.

Gross power:

The electrical power generated by the turbine­generator.

Net power:

The electrical power available for export from the OTEC plant. The difference between gross power and in­plant power consumption needed to run...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Bibliography

Primary Literature

  1. Coastal Response Research Center (2010) National oceanic and atmospheric administration (NOAA) technical readiness of ocean thermal energy conversion (OTEC). University of New Hampshire, Durham. 27 pp and appendices

    Google Scholar 

  2. Vega L (2003) Ocean thermal energy conversion primer. Mar Technol Soc J 6(4):25–35

    Google Scholar 

  3. Nihous GC (2007) A preliminary assessment of ocean thermal energy conversion resources. Trans ASME 29:10–17

    Google Scholar 

  4. Steinbach RB (1982) Mini­OTEC: a hardware perspective. In: Society of naval architects and marine engineers spring meeting, Honolulu, pp 289–306

    Google Scholar 

  5. Thomas A, Hillis DL (1989) Biofouling and corrosion research for marine heat exchangers, prepared by Argonne national Laboratory, Energy and Environmental Systems Division for US. Department of Energy, Wind/Ocean Technologies Division. Presented at Oceans’89, Seattle, Washington, DC

    Google Scholar 

  6. Kinelski EH (1985) Ocean thermal energy conversion heat exchangers: a review of research and development. Mar Technol J 22(1):64–73

    Google Scholar 

  7. Uehara H et al (1999) The experimental research on ocean thermal energy conversion using the Uehara cycle. In: Proceedings of the international OTEC/DOWA conference’99, Imari, pp 132–141

    Google Scholar 

  8. Claude G (1930) Power from the tropical seas. Mech Eng 52(12/19):1039–1044

    Google Scholar 

  9. Vega LA, Evans DE (1994) Operation of a small open­cycle OTEC experimental facility. In: Proceedings of oceanology international 94, vol 5, Brighton

    Google Scholar 

  10. Vega LA (1995) The 210 kW apparatus: status report. In: Oceans’95 conference, San Diego

    Google Scholar 

  11. Syed MA, Nihous GC, Vega LA (1991) Use of cold seawater for air conditioning. In: Oceans’91, Honolulu

    Google Scholar 

  12. Vega LA (1992) Economics of ocean thermal energy conversion (OTEC). In: Seymour RJ (ed) Ocean energy recovery: the state of the art. American Society of Civil Engineers, New York

    Google Scholar 

  13. Nihous GC, Vega LA (1993) Design of a 100 MW OTEC­hydrogen plantship. Mar Struct 6(2–3):207–221. (Published by Elsevier, England)

    Article  Google Scholar 

  14. Vega LA, Nihous GC (1994) Design of a 5 MWe OTEC pre­commercial plant. In: Proceedings oceanology international’94 conference, Brighton

    Google Scholar 

  15. Nihous GC (2010) Professor University of Hawaii (nihous@hawaii.edu). Personal Communication: Information about Global Ocean Thermal Energy Resources

    Google Scholar 

  16. Locarnini RA, Mishonov AV, Antonov JI, Boyer TP, Garcia HE (2006) NOAA atlas NESDIS 61. In: Levitus S (ed) World ocean atlas 2005: temperature, vol 1. U.S. Government Printing Office, Washington, DC. 182 pp

    Google Scholar 

  17. Chassignet EP, Hurlburt HE, Metzger EJ, Smedstad OM, Cummings JA, Halliwell GR, Bleck R, Baraille R, Wallcraft AJ, Lozano C, Tolman HL, Srinivasan A, Hankin S, Cornillon P, Weisberg R, Barth A, He R, Werner F, Wilkin J (2009) US GODAE: global ocean prediction with the HYbrid Coordinate Ocean Model (HYCOM). Oceanography 22(2):65–75

    Article  Google Scholar 

  18. Flament P, Kennan S, Lumpkin R, Sawyer M, Stroup ED (1996) Ocean atlas of Hawaii. http://www.soest.hawaii.edu/hioos/oceanatlas/index.htm

  19. Vega LA, Nihous GC (1988) At­sea test of the structural response of a large diameter pipe attached to a surface vessel. Paper #5798, Offshore Technology Conference, Houston

    Google Scholar 

  20. Nihous GC, Syed MA, Vega LA (1989) Conceptual design of a small open­cycle OTEC plant for the production of electricity and fresh water in a pacific island. In: Proceedings of the international conference on ocean energy recovery, Honolulu (Published by the American Society of Civil Engineers)

    Google Scholar 

  21. Coastal Response Research Center (2010) National oceanic and atmospheric administration (NOAA) ocean thermal energy conversion: assessing potential physical, chemical and biological impacts and risks. University of New Hampshire, Durham, NH, 39 pp and appendices

    Google Scholar 

  22. Nihous GC, Vega LA (1991) A review of some semi­empirical OTEC effluent discharge models. In: Oceans’91, Honolulu

    Google Scholar 

  23. Quinby-Hunt MS, Wilde P, Dengler AT (1986) Potential environmental impacts of open­cycle ocean thermal energy conversion. Environ Impact Assess Rev 6:77–93. (Elsevier, New York)

    Article  Google Scholar 

  24. Quinby-Hunt MS, Sloan D, Wilde P (1987) Potential environmental impacts of closed­cycle ocean thermal energy conversion. Environ Impact Assess Rev 7:169–198. (Elsevier, New York)

    Article  Google Scholar 

  25. Vega LA, Michaelis D (2010) First generation 50 MW OTEC plantship for the production of electricity and desalinated water. In: Offshore technology conference (OTC 20957), Houston

    Google Scholar 

  26. Vega LA (2010) Economics of ocean thermal energy conversion (OTEC): an update. In: Offshore technology conference (OTC 21016), Houston

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Vega .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this entry

Cite this entry

Vega, L. (2017). Ocean Thermal Energy Conversion. In: Meyers, R. (eds) Encyclopedia of Sustainability Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2493-6_695-3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2493-6_695-3

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-2493-6

  • Online ISBN: 978-1-4939-2493-6

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics