Skip to main content

WTE, Greenhouse Gas Benefits

  • Living reference work entry
  • First Online:
Encyclopedia of Sustainability Science and Technology

Glossary

Carbon dioxide (CO2):

Is a by-product of the combustion of fossil fuels or organic materials. Carbon dioxide is the principal greenhouse gas (GHG) in the earth’s atmosphere.

Carbon dioxide equivalents (CO2,eq):

Carbon dioxide equivalents influence the Greenhouse gases (GHG) effect in different degrees. Their contribution is calculated in volume (or mole) equivalents to carbon dioxide.

Combined heat and power generation (CHP):

Is the simultaneous generation of both electricity and useful heat. Energy at a high temperature level is first converted to electricity, and the remaining energy, at a low level, is used to produce heat (e.g., district heating).

Global warming factor (GWF):

Expresses the amount of released CO2,eq for a combusted unit of fuel, in Mg CO2,eq/Mg of fuel, and can be expressed as generated amount of electricity, in Mg CO2,eq/MWhel, or heat, in Mg CO2,eq/MWhth.

Greenhouse gas (GHG):

Gases in the atmosphere that absorb and reemit infrared radiation; they cause...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Bibliography

Primary Literature

  1. National Inventory Report for the German Greenhouse Gas Inventory 1990–2007 (2008) Submission under the United Nations Framework Convention on Climate Change and the Kyoto Protocol 2008. Federal Environment Office, Dessau-Roßlau, Apr 2008, p 47

    Google Scholar 

  2. Metz B et al (eds) (2005) Special report on safeguarding the ozone layer and the global climate system: issues related to hydrofluorocarbons and perfluorocarbons. Cambridge University Press, Cambridge/New York

    Google Scholar 

  3. VDI (2007) Emission control: energy conversion in thermal solid waste treatment. VDI 3460, part 2, 2007, issue German/English, ICS 13.030.40, 27.190. VDI, Düsseldorf, p 13

    Google Scholar 

  4. Guendehou G, Koch M, Hockstad L, Pipatti R, Yamada M (1997) Incineration and open burning of waste. In: IPCC guidelines for national greenhouse gas inventories, vol 5, chap 5, p 5.5. http://www.ipcc-nggip.iges.or.jp/public/2006gl/

  5. Obermoser M, Fellner J, Rechenberger H (2009) Determination of reliable CO2 emission factors for waste-to-energy plants. Waste Manag Res 27(9):407–413, Applied greenhouse gas accounting: methodologies and cases

    Google Scholar 

  6. Riber C, Pedersen C, Christensen TH (2009) Chemical composition of material fractions in Danish household waste. Waste Manag 29:1251–1257

    Article  CAS  Google Scholar 

  7. Gentil E, Clavreul J, Christensen TH (2009) Global warming factor of MSW management in Europe. Waste Manag Res 27(9):850–860, Applied greenhouse gas accounting: methodologies and cases

    Google Scholar 

  8. Manfredi S, Scharff HM, Tonini D, Christensen TH (2009) Landfilling of waste: accounting of GHGs and GW contributions. Waste Manag Res 27(8):825–836, Fundamental in greenhouse gas accounting: concepts and mechanisms

    Google Scholar 

  9. Astrup T, Moeller J, Fruergaard T (2009) Incineration and co-combustion of waste: accounting GHG and global warming contribution. Waste Manag Res 27(8):789–799, Applied greenhouse gas accounting: methodologies and cases

    Google Scholar 

  10. Bilitewski B, Wünsch C, Jager J, Hoffmann M (2010) Energieeffizienzsteigerung und CO2-Vermeidungspotenziale bei der Müllverbrennung – technische und wirtschaftliche Bewertung. EdDE-Dokumentation 13, Entsorgergemeinschaft der deutschen Entsorgungswirtschaft e.V., Apr 2010, p 16

    Google Scholar 

  11. Roland C, Scheibengraf M (2003) Biologisch abbaubarer Kohlenstoff im Restmüll. Umweltbundesamt, Berichte BE-236, Wien

    Google Scholar 

  12. Pipatti R, Sharma C, Yamada M, Alves J, Gao Q, Guendehou G, Koch M, López Cabrera C, Mareckova K, Oonk H, Scheehle E, Smith A, Svardal P, Vieira S (2006) Waste generation, composition and management data. Solid waste disposal. In: IPCC guidelines for national greenhouse gas inventories, vol 5, chaps 2 and 3. http://www.ipcc-nggip.iges.or.jp/public/2006gl/

  13. Dehoust G, Schüler D, Vogt R, Giegrich J (2010) Klimaschutzpotenziale der Abfallwirtschaft. IFEU und Ökoinstitut e.V, Darmstadt/Heidelberg/Berlin

    Google Scholar 

  14. Hiraishi T, Nyenzi B, Miguez J, Alves J, Boeckx P, Brown K, Hoppaus R, Jubb C, Kerr T, Kleffelgaard T, Lucon O, Mauschitz G, Midaglia C, Milton M, Mondshine M, Oonk H, Paradiz B,Steczko K, Teixeira G, Towprayoon S, Yesserkepova I (2001) Waste. In: IPCC good practice guidance and uncertainty management in national greenhouse gas inventories, chap 5, p 5.29. http://www.ipcc-nggip.iges.or.jp/public/2006gl/

  15. Scheutz P, Kjeldsen P, Gentil E (2009) Greenhouse gases, radiative forcing, global warming potential and waste management – an introduction. Waste Manag Res 27(8):716–723, Fundamental in greenhouse gas accounting: concepts and mechanisms

    Google Scholar 

  16. Bilitewski B, Schirmer M, Niestroj J, Wagner J (2005) Ökologische Effekte der Müllverbrennung durch Energienutzung, EdDE-Dokumentation 10, Entsorgergemeinschaft der deutschen Entsorgungswirtschaft e.V. Pirna, 2005, p 24

    Google Scholar 

  17. Houghton JT et al (eds) (1996) Intergovernmental Panel on Climate Change: climate change 1995: the science of climate change. Contribution of working group I to the second assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  18. Global Emission Model for Integrated Systems (2009) Version 4.6, Öko-Institut e.V

    Google Scholar 

  19. Treder M (2008) Energieerzeugung und Klimarelevanz der W-t-E Anlagen in Deutschland (Kurzfassung vom 16.07.2008), Würzburg

    Google Scholar 

  20. Reimann DO (2009) CEWEP energy report II (status 2004–2007). CEWEP, Bamberg

    Google Scholar 

  21. Fruergaard T, Ekvall T, Astrup T (2009) Energy use and recovery in waste management and implications for accounting of greenhouse gases and global warming contributions. Waste Manag Res 27(8):724–737, Fundamental in greenhouse gas accounting: concepts and mechanisms

    Google Scholar 

  22. Staiß F, Linkohr C, Zimmer U, Musiol F, Ottmüller M (2008) Erneuerbare energien in zahlen, nationale und internationale entwicklungen. Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit (BMU), Berlin

    Google Scholar 

  23. BREF/BAT Waste Incineration for Integrated Pollution Prevention and Control (IPPC) (2005) Draft reference document on the best available techniques for waste incineration, European Commission, final draft, May 2005. EIPPC Bureau, Seville

    Google Scholar 

  24. Dones R, Heck T, Hirschberg S (2004) Greenhouse gas emissions from energy systems, comparison and overview. In: Cleveland C (ed) Encyclopedia of energy, vol 3. Academic/Elsevier, San Diego, pp 77–95

    Chapter  Google Scholar 

  25. Umweltbundesamt – German Federal Office for Environment, press information 34/2008, Dessau-Rosslau, May 16

    Google Scholar 

  26. Kressig J, Stoffregen A (2008) Life cycle assessment of waste-to-energy plants in Europe – modeling of thermal treatment of municipal and similar waste to calculate eco-profiles for the European reference life cycle data system (ELCD). Performed for CEWEP by PE International, Leihnfelden-Echterdingen

    Google Scholar 

  27. Skovgaard M, Hedal N, Valanueva A, Andersen FM, Larsen H (2008) Municipal solid waste management and greenhouse gases, ETC/RWM working paper 2008/1. European Topic Center (ETC) on Resource and Waste Management (RWM), Copenhagen

    Google Scholar 

  28. ATSDR (2001) Landfill gas basic, agency for toxic substances & disease registry. In: Landfill gas primer – an overview for environmental health professionals, chap 2. ATSDR, Atlanta

    Google Scholar 

  29. Tabasaran O, Rettenberger G (1987) Grundlagen zur Planung von Entgasungsanlagen. In: Handbuch Müll und Abfall, Kennz. 4547, Lieferung 1/87. E. Schmidt Verlag

    Google Scholar 

  30. National Inventory Report for the German Greenhouse Gas Inventory 1990–2008 (2010) Submission under the United Nations Framework Convention on Climate Change and the Kyoto Protocol 2010. Federal Environment Office, Dessau-Roßlau

    Google Scholar 

  31. Abfallbilanz, Umwelt, Statistisches Bundesamt, Wiesbaden, Erschienen im Juli 2010

    Google Scholar 

  32. Fritsche U, Rausch L (2008) Bestimmung spezifischer Treibhausgas-Emissionsfaktoren für Fernwärme, Bereich Energie & Klimaschutz. Öko-Institut, Büro Darmstadt, Im Auftrag des Umweltbundesamtes, Dessau-Roßlau, Mai 2008

    Google Scholar 

  33. Bundesministerium für Wirtschaft und Technologie (Federal Ministry for Economics and Technology) (2006) Energieversorgung für Deutschland, Statusbericht für den Energiegipfel am 3 April 2006. März, Berlin, p 61

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Wünsch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this entry

Cite this entry

Bilitewski, B., Wünsch, C. (2017). WTE, Greenhouse Gas Benefits. In: Meyers, R. (eds) Encyclopedia of Sustainability Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2493-6_403-3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2493-6_403-3

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-2493-6

  • Online ISBN: 978-1-4939-2493-6

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics