Encyclopedia of Sustainability Science and Technology

Living Edition
| Editors: Robert A. Meyers

WTE, Greenhouse Gas Benefits

Living reference work entry
DOI: https://doi.org/10.1007/978-1-4939-2493-6_403-3

Glossary

Carbon dioxide (CO 2)

Is a by-product of the combustion of fossil fuels or organic materials. Carbon dioxide is the principal greenhouse gas (GHG) in the earth’s atmosphere.

Carbon dioxide equivalents (CO 2,eq)

Carbon dioxide equivalents influence the Greenhouse gases (GHG) effect in different degrees. Their contribution is calculated in volume (or mole) equivalents to carbon dioxide.

Combined heat and power generation (CHP)

Is the simultaneous generation of both electricity and useful heat. Energy at a high temperature level is first converted to electricity, and the remaining energy, at a low level, is used to produce heat (e.g., district heating).

Global warming factor (GWF)

Expresses the amount of released CO2,eq for a combusted unit of fuel, in Mg CO2,eq/Mg of fuel, and can be expressed as generated amount of electricity, in Mg CO2,eq/MWhel, or heat, in Mg CO2,eq/MWhth.

Greenhouse gas (GHG)

Gases in the atmosphere that absorb and reemit infrared radiation; they cause the...

This is a preview of subscription content, log in to check access.

Bibliography

Primary Literature

  1. 1.
    National Inventory Report for the German Greenhouse Gas Inventory 1990–2007 (2008) Submission under the United Nations Framework Convention on Climate Change and the Kyoto Protocol 2008. Federal Environment Office, Dessau-Roßlau, Apr 2008, p 47Google Scholar
  2. 2.
    Metz B et al (eds) (2005) Special report on safeguarding the ozone layer and the global climate system: issues related to hydrofluorocarbons and perfluorocarbons. Cambridge University Press, Cambridge/New YorkGoogle Scholar
  3. 3.
    VDI (2007) Emission control: energy conversion in thermal solid waste treatment. VDI 3460, part 2, 2007, issue German/English, ICS 13.030.40, 27.190. VDI, Düsseldorf, p 13Google Scholar
  4. 4.
    Guendehou G, Koch M, Hockstad L, Pipatti R, Yamada M (1997) Incineration and open burning of waste. In: IPCC guidelines for national greenhouse gas inventories, vol 5, chap 5, p 5.5. http://www.ipcc-nggip.iges.or.jp/public/2006gl/
  5. 5.
    Obermoser M, Fellner J, Rechenberger H (2009) Determination of reliable CO2 emission factors for waste-to-energy plants. Waste Manag Res 27(9):407–413, Applied greenhouse gas accounting: methodologies and casesGoogle Scholar
  6. 6.
    Riber C, Pedersen C, Christensen TH (2009) Chemical composition of material fractions in Danish household waste. Waste Manag 29:1251–1257CrossRefGoogle Scholar
  7. 7.
    Gentil E, Clavreul J, Christensen TH (2009) Global warming factor of MSW management in Europe. Waste Manag Res 27(9):850–860, Applied greenhouse gas accounting: methodologies and casesGoogle Scholar
  8. 8.
    Manfredi S, Scharff HM, Tonini D, Christensen TH (2009) Landfilling of waste: accounting of GHGs and GW contributions. Waste Manag Res 27(8):825–836, Fundamental in greenhouse gas accounting: concepts and mechanismsGoogle Scholar
  9. 9.
    Astrup T, Moeller J, Fruergaard T (2009) Incineration and co-combustion of waste: accounting GHG and global warming contribution. Waste Manag Res 27(8):789–799, Applied greenhouse gas accounting: methodologies and casesGoogle Scholar
  10. 10.
    Bilitewski B, Wünsch C, Jager J, Hoffmann M (2010) Energieeffizienzsteigerung und CO2-Vermeidungspotenziale bei der Müllverbrennung – technische und wirtschaftliche Bewertung. EdDE-Dokumentation 13, Entsorgergemeinschaft der deutschen Entsorgungswirtschaft e.V., Apr 2010, p 16Google Scholar
  11. 11.
    Roland C, Scheibengraf M (2003) Biologisch abbaubarer Kohlenstoff im Restmüll. Umweltbundesamt, Berichte BE-236, WienGoogle Scholar
  12. 12.
    Pipatti R, Sharma C, Yamada M, Alves J, Gao Q, Guendehou G, Koch M, López Cabrera C, Mareckova K, Oonk H, Scheehle E, Smith A, Svardal P, Vieira S (2006) Waste generation, composition and management data. Solid waste disposal. In: IPCC guidelines for national greenhouse gas inventories, vol 5, chaps 2 and 3. http://www.ipcc-nggip.iges.or.jp/public/2006gl/
  13. 13.
    Dehoust G, Schüler D, Vogt R, Giegrich J (2010) Klimaschutzpotenziale der Abfallwirtschaft. IFEU und Ökoinstitut e.V, Darmstadt/Heidelberg/BerlinGoogle Scholar
  14. 14.
    Hiraishi T, Nyenzi B, Miguez J, Alves J, Boeckx P, Brown K, Hoppaus R, Jubb C, Kerr T, Kleffelgaard T, Lucon O, Mauschitz G, Midaglia C, Milton M, Mondshine M, Oonk H, Paradiz B,Steczko K, Teixeira G, Towprayoon S, Yesserkepova I (2001) Waste. In: IPCC good practice guidance and uncertainty management in national greenhouse gas inventories, chap 5, p 5.29. http://www.ipcc-nggip.iges.or.jp/public/2006gl/
  15. 15.
    Scheutz P, Kjeldsen P, Gentil E (2009) Greenhouse gases, radiative forcing, global warming potential and waste management – an introduction. Waste Manag Res 27(8):716–723, Fundamental in greenhouse gas accounting: concepts and mechanismsGoogle Scholar
  16. 16.
    Bilitewski B, Schirmer M, Niestroj J, Wagner J (2005) Ökologische Effekte der Müllverbrennung durch Energienutzung, EdDE-Dokumentation 10, Entsorgergemeinschaft der deutschen Entsorgungswirtschaft e.V. Pirna, 2005, p 24Google Scholar
  17. 17.
    Houghton JT et al (eds) (1996) Intergovernmental Panel on Climate Change: climate change 1995: the science of climate change. Contribution of working group I to the second assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  18. 18.
    Global Emission Model for Integrated Systems (2009) Version 4.6, Öko-Institut e.VGoogle Scholar
  19. 19.
    Treder M (2008) Energieerzeugung und Klimarelevanz der W-t-E Anlagen in Deutschland (Kurzfassung vom 16.07.2008), WürzburgGoogle Scholar
  20. 20.
    Reimann DO (2009) CEWEP energy report II (status 2004–2007). CEWEP, BambergGoogle Scholar
  21. 21.
    Fruergaard T, Ekvall T, Astrup T (2009) Energy use and recovery in waste management and implications for accounting of greenhouse gases and global warming contributions. Waste Manag Res 27(8):724–737, Fundamental in greenhouse gas accounting: concepts and mechanismsGoogle Scholar
  22. 22.
    Staiß F, Linkohr C, Zimmer U, Musiol F, Ottmüller M (2008) Erneuerbare energien in zahlen, nationale und internationale entwicklungen. Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit (BMU), BerlinGoogle Scholar
  23. 23.
    BREF/BAT Waste Incineration for Integrated Pollution Prevention and Control (IPPC) (2005) Draft reference document on the best available techniques for waste incineration, European Commission, final draft, May 2005. EIPPC Bureau, SevilleGoogle Scholar
  24. 24.
    Dones R, Heck T, Hirschberg S (2004) Greenhouse gas emissions from energy systems, comparison and overview. In: Cleveland C (ed) Encyclopedia of energy, vol 3. Academic/Elsevier, San Diego, pp 77–95CrossRefGoogle Scholar
  25. 25.
    Umweltbundesamt – German Federal Office for Environment, press information 34/2008, Dessau-Rosslau, May 16Google Scholar
  26. 26.
    Kressig J, Stoffregen A (2008) Life cycle assessment of waste-to-energy plants in Europe – modeling of thermal treatment of municipal and similar waste to calculate eco-profiles for the European reference life cycle data system (ELCD). Performed for CEWEP by PE International, Leihnfelden-EchterdingenGoogle Scholar
  27. 27.
    Skovgaard M, Hedal N, Valanueva A, Andersen FM, Larsen H (2008) Municipal solid waste management and greenhouse gases, ETC/RWM working paper 2008/1. European Topic Center (ETC) on Resource and Waste Management (RWM), CopenhagenGoogle Scholar
  28. 28.
    ATSDR (2001) Landfill gas basic, agency for toxic substances & disease registry. In: Landfill gas primer – an overview for environmental health professionals, chap 2. ATSDR, AtlantaGoogle Scholar
  29. 29.
    Tabasaran O, Rettenberger G (1987) Grundlagen zur Planung von Entgasungsanlagen. In: Handbuch Müll und Abfall, Kennz. 4547, Lieferung 1/87. E. Schmidt VerlagGoogle Scholar
  30. 30.
    National Inventory Report for the German Greenhouse Gas Inventory 1990–2008 (2010) Submission under the United Nations Framework Convention on Climate Change and the Kyoto Protocol 2010. Federal Environment Office, Dessau-RoßlauGoogle Scholar
  31. 31.
    Abfallbilanz, Umwelt, Statistisches Bundesamt, Wiesbaden, Erschienen im Juli 2010Google Scholar
  32. 32.
    Fritsche U, Rausch L (2008) Bestimmung spezifischer Treibhausgas-Emissionsfaktoren für Fernwärme, Bereich Energie & Klimaschutz. Öko-Institut, Büro Darmstadt, Im Auftrag des Umweltbundesamtes, Dessau-Roßlau, Mai 2008Google Scholar
  33. 33.
    Bundesministerium für Wirtschaft und Technologie (Federal Ministry for Economics and Technology) (2006) Energieversorgung für Deutschland, Statusbericht für den Energiegipfel am 3 April 2006. März, Berlin, p 61Google Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  1. 1.Institute für Waste Management and Circular Economy, Technical University of DresdenPirnaGermany