Skip to main content

WTE, The Martin WTE Technology

  • Living reference work entry
  • First Online:
Encyclopedia of Sustainability Science and Technology
Reverse-acting grate:

Grate system, inclined at an angle of 26°, with rows of grate bars moving up and down against the downward flow of solids.

Reverse-acting grate VARIO:

Grate system, inclined at an angle of 24°, with rows of grate bars moving up and down against the downward flow of solids. It is divided into three independent drive zones along its length.

Horizontal grate:

Horizontal grate system with rows of grate bars moving in opposite directions alternated with stationary rows of grate bars.

SYNCOM:

SYNthetic COMbustion using oxygen-enriched underfire air on a reverse-acting grate.

IR camera:

Infrared camera recording the surface temperature across the width and the length of the bed on the grate for selected bandwidths from the roof of the combustion chamber.

MICC:

MARTIN Infrared Combustion Control for reverse-acting grate systems including fuzzy logic control, IR camera, operating mode concept, and operational data logging/visualization.

ACC:

Advanced Combustion Control...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Bibliography

Primary Literature

  1. MARTIN GmbH für Umwelt- und Energietechnik (2016) http://www.martingmbh.de

  2. Koralewska R (2006) MARTIN Reverse-acting grate system – the challenge of high heating value fuels. Fourteenth NAWTEC, 1–3 May, Tampa

    Google Scholar 

  3. Gohlke O, Busch M (2001) Reduction of combustion by-products in WTE plants: O2 enrichment of underfire air in the Martin Syncom process. Chemosphere 42:545–550

    Google Scholar 

  4. Gohlke O, Koralewska R, Zellinger G, Takuma M, Kuranishi M, Yanagisawa Y (2006) Alternatives to ash melting and gasification. Fourth i-CIPEC, 26–29 sept, Kyoto

    Google Scholar 

  5. Gohlke O, Martin J (2007) Drivers for innovation in waste-to-energy technology. Waste Manag Res 25:214–219

    Article  Google Scholar 

  6. Gleis M (2009) Reliability of new technologies of thermal waste treatment. 10th Assises des déchets, 21–22 Oct, Atlantia la Baule

    Google Scholar 

  7. Gleis M (2010) Ungläubiges Kopfschütteln-Pyrolyse das einst viel gepriesene Abfallbehandlungsverfahren hat sich in Europa nicht durchgesetzt. Steht ihm nun eine Renaissance bevor? RECYCLING magazin 07:30–31

    Google Scholar 

  8. Tadishi O, Hiroyuki H, Kazuaki S (2006) Operation data of MSW gasification and melting plant. Fourth i-CIPEC, 26–29 Sept, Kyoto

    Google Scholar 

  9. Whiting K, Schwager J (2006) Why are novel technologies, such as gasification, for MSW processing struggling to make an impact in Europe?. Fourth i-CIPEC, 26–29 Sept, Kyoto

    Google Scholar 

  10. Vehlow J (2009) Abfallverbrennung in Deutschland. Müllhandbuch digital, ESV Erich Schmidt Verlag, MuA Lfg. 2/09

    Google Scholar 

  11. International Energy Agency IEA (2010) IEA Biomass Agreement. Task X, Sub-task 6-Gasification of waste, http://www.ieabioenergy.com

  12. Beckmann M, Scholz R, Wiese C, Davidovic M (1997) Optimization of gasification of waste materials in grate systems. International conference on incineration & thermal treatment technologies, 12–16 May, San Francisco

    Google Scholar 

  13. Davidovic M (2007) Gasification and NOx-reduction with a reverse-acting grate and a multistaged postcombustion chamber. Presentation at Clausthaler Umwelttechnik-Institut GmbH/CUTEC, Clausthal-Zellerfeld

    Google Scholar 

  14. Schreiner R, Jansen A (1997) Infrared cameras guide combustion control. Modern Power Systems 17(9):45–49

    Google Scholar 

  15. Meile E, Schreiner R (2002) Gezielte Prozessbeeinflussung durch Aufschalten einer Infrarotkamera am Beispiel der MVA Winterthur. Entsorgungspraxis 5:26–30

    Google Scholar 

  16. Zipser S, Gommlich A, Matthes J, Keller H, Fouda Ch, Schreiner R (2004) On the optimization of industrial combustion processes using infrared thermography. Proceedings of the 23rd IASTED International Conference on Modeling, Identification and Control, pp 386–391

    Google Scholar 

  17. Keller H, Matthes J, Zipser S, Schreiner R, Gohlke O, Horn J, Schönecker H (2007) Kamerabasierte Feuerungsregelung bei stark schwankender Brennstoffzusammensetzung. VGB Powertech 03(2007):85–92

    Google Scholar 

  18. Gohlke O (2009) Efficiency of energy recovery from municipal solid waste and the resultant effect on the GHG balance. Waste Manag Res 27:894–906

    Article  CAS  Google Scholar 

  19. Gohlke O, Seitz A, Spliethoff H (2007) Innovative approaches to increase efficiency in EfW plants – potential and limitations. ISWA, Amsterdam

    Google Scholar 

  20. Murer MJ, Spliethoff H, van Berlo MAJ, de Waal CMW, Gohlke O (2009) Comparison of energy efficiency indicators for EfW plants. Proceedings of the Sardinia 2009 Symposium

    Google Scholar 

  21. Nachreiner S, Troßmann-Göll M, Dräger R (2015) Moderne Überhitzerkonzepte für Müllverbrennungsanlagen. VGB PowerTech 9/2015, p 89–92

    Google Scholar 

  22. Mennessier A (2008) Study of an innovative process for NOx reduction in an energy-from-waste plant. B.Sc. Technische Universität München, München

    Google Scholar 

  23. ANSYS Inc (2010) ANSYS FLUENT 12.0 Documentation

    Google Scholar 

  24. Wolf Ch (2005) Erstellung eines Modells der Verbrennung von Abfall auf Rostsystemen unter besonderer Berücksichtigung der Vermischung - Ein Beitrag zur Simulation von Abfallverbrennungsanlagen. Dissertation, Universität Duisburg-Essen, Duisburg

    Google Scholar 

  25. Martin U (2010) Beschreibung der Brennstoffumsetzung im Brennbett von Rostfeuerungen. Technische Universität München, München

    Google Scholar 

  26. Koralewska R (2005) Industrial-scale validation of a CFD simulation in conjunction with a fuel-bed model. Presentation at Waste-to-Energy Research and Technology Council, Columbia University, New York

    Google Scholar 

  27. Koralewska R, Wolf Ch (2005) Industrial-scale validation of a CFD model in conjunction with a fuel-bed model for the thermal treatment of waste in grate-based combustion plants. VDI-Berichte 1888, 22. Deutscher Flammentag, VDI-Verlag, Düsseldorf, pp 613–619

    Google Scholar 

  28. Rossignoli P (2010) High-dust selective catalytic NOx reduction at WTE plant in Brescia. Second international conference on biomass and waste combustion, 16–17 Feb, Oslo

    Google Scholar 

  29. Gohlke O, Busch M, Horn J, Takuma M, Kuranishi M, Yanagisawa Y (2003) New grate-based waste-to-energy system producing an inert ash granulate. Waste Manag World, pp 37–46

    Google Scholar 

  30. Martin J, Gohlke O, Tabaries F, Praud A, Yanagisawa Y, Takuma M (2005) Defining inert – a technological solution to minimize ecotoxicity. Waste Manag World 9/10:70–73

    Google Scholar 

  31. Koralewska R. (2009): SYNCOM-Plus – An optimized residue treatment process. Seventeenth NAWTEC, 18–20 May, Chantilly

    Google Scholar 

  32. Bourtsalas A, Vandeperre L, Grimes S, Themelis N, Koralewska R, Cheeseman C (2015) Properties of ceramics prepared using dry discharged waste to energy bottom ash dust. Waste Manag Res 33(9):794–804

    Article  CAS  Google Scholar 

  33. Quicker P, Stockschläder J. Möglichkeiten einer ressourcenschonenden Kreislaufwirtschaft durch weitergehende Gewinnung von Rohstoffen aus festen Verbrennungs-rückständen aus der Behandlung von Siedlungsabfällen. Umweltforschungsplan des Bundesministeriums für Umwelt, Naturschutz, Bau und Reaktorsicherheit, Forschungskennzahl 3713 33 303

    Google Scholar 

  34. Schlumberger S (2010) Neue Technologien und Möglichkeiten der Behandlung von Rauchgasreinigungsrückständen im Sinne eines nachhaltigen Ressourcenmanagements. Proceedings of Bundesamt für Umwelt BAFU: Verbrennungsrückstände in der Schweiz, Bern

    Google Scholar 

  35. BSH Umweltservice AG (2010) http://www.bsh.ch

  36. Schlumberger S (2005) Entwicklung und Optimierung eines Verfahrens zur selektiven Zinkrückgewinnung aus sauren Ascheextrakten der thermischen Abfallentsorgung. Dissertation, Technische Universität München, München

    Google Scholar 

  37. Fleck E (2006) A long-time flame – waste-to-energy still goes strong in Europe. Waste Manag World, pp 107–116

    Google Scholar 

  38. Martin J (2010) Der Anlagenbau für Abfallverbrennungsanlagen - Strukturen und Märkte im Licht der Globalisierung. In: Thomé-Kozmiensky KJ, Versteyl A (eds) Planung und Umweltrecht – Bd 4. TK Verlag, Neuruppin, pp 41–56

    Google Scholar 

Books and Reviews

  • Chandler AJ, Eighmy TT, Hjelmar O, Vehlow J et al (1997) Municipal solid waste incinerator residues. Elsevier, Amsterdam

    Google Scholar 

  • Ortiz de Urbina G, Goumans JJJM (2003) Fifth international conference on the environmental and technical implications of construction with alternative materials. WASCON, 4–6 June, San Sebastian

    Google Scholar 

  • Ludwig CB et al (1973) Handbook of infrared radiation from combustion gases. NASA SP-3080, Washington, DC

    Google Scholar 

  • Spliethoff H (2009) Power generation from solid fuels. Springer Verlag, Berlin

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Koralewska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this entry

Cite this entry

Martin, U., Martin, J., Koralewska, R. (2017). WTE, The Martin WTE Technology. In: Meyers, R. (eds) Encyclopedia of Sustainability Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2493-6_397-3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2493-6_397-3

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-2493-6

  • Online ISBN: 978-1-4939-2493-6

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics